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I ABSTRACT 

I Convective adjustment is studied 
using results from a two-dimensional 

1 numerical model (of a baroclinic, dry, 
rotating fluid) that, in contrast to 
parameterization approaches, uses the 
full dynamic equations in spectral f orm 
to determine interactions among large- 
scale quasi-geostrophic waves and 
small-scale eddy ensembles. Both the 
large-scale and the small-scale eddies 
result from physical instabilities. The 
spectral formulation has desirable 
energy propagation and conservation 
properties, and also has the advantage 
(not implemented in this early study) 
of allowing one to determine interac- 
tions between different scale eddies 

without having to represent intermedi- 
ate scale eddies. The primary results 
are that: (i)  there is a clear spectral 
gap in interactions affecting large- 
scale eddies and (ii) the large-scale 
vertical heat transport by the small- 
scale eddy ensembles varies signif- 
icantly with time. This variation ap- 
pears at least partly associated with 
ensemble group velocities in a space- 
varying large-scale environment, 
rather than with time variations of the 
large-scale environment (as would be 
consistent with the parameterization 
assumption that large-scale fields 
determine nonlinear transports by un- 
resolved eddies). 

1 Introduction 
It is well established that ensembles of small-scale atmospheric eddies affect 
large-scale atmospheric eddies (scales of 1000 km or more) and vice-versa. 
The primary mechanisms for the former processes are vertical transports of 
heat and momentum and conversion between latent and sensible heat. The 
large-scale eddies, in turn, modulate the small-scale eddies. CISK is a widely dis- 

1 
cussed example of an important scale interaction (Charney and Eliassen, 1964; 
Ogura, 1964; Ooyama, 1964; Bates, 1973; Lindzen, 1974). 

These phenomena have important nonlinear aspects and are not understood 
in detail. Recent power spectrum measurements (Hogstrom and Hogstrom, 
1975) have shed new light on the mechanisms; the implied gap in the energy 
spectrum suggests that "nonlocal" spectral interactions discussed in this section 
are very active and may be predominant. The current AMTEX data (Ninomiya, 
1975) are being gathered to gain more quantitative information on the primary 
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mechanisms. The main practical requirements are quantitative relations be- 
tween large-scale vertical transports of heat and momentum and latent heat 
release (dependent variables), and large-scale fields (independent variables). 
Extensive and accurate measurements are required. I believe the present nu- 
merical approach can complement such data, and yield a detailed picture which 
is difficult to obtain purely from observational data. 

Previous numerical studies have been primarily concerned with convection 
in a mesoscale environment and have focused on the detailed structure and 
physics of individual convection eddies and/or on the mesoscale space-aver- 
aged transport properties. The present study is more concerned with how an 
ensemble of small-scale convective eddies is modulated in space and time by 
nonlinear interaction with time-dependent large-scale eddies. The basic require- 
ments for such a numerical study are that both long, quasi-hydrostatic, 
quasi-geostrophic waves (resulting from baroclinic instability), and short, 
non-hydrostatic, nonlinear waves (resulting from static and boundary-layer 
shear-induced instabilities) be modelled explicitly. The small-scale eddies must 
be determined by the Navier-Stokes equations, rather than by some greatly 
simplified physical relationships; the goal is to improve such parameterization 
relations. A spectral approach is very attractive, since it would: (i) allow one 
to represent widely separated scales of motion without having to represent 
intermediate scales, by using a "spectral gap" model; (ii) eliminate small-scale 
group velocity errors associated with linear phase speed errors. The latter are 
important because group velocity is a fundamental parameter in determining 
small-scale ensemble interactions with large-scale eddies (Dietrich, et al., 
1975 ) . Finite difference truncation error leads to large phase and group velocity 
errors in the small-scale flow components. It would (iii) allow conservation of 
energy in triad interactions between a long wave and two short waves, which 
is important in describing instability phenomena. Finite difference approaches 
do not allow such triad energy conservation because of the "aliasing" effects 
of truncation error. It would (iv) facilitate the quantitative description of the 
interactions among various scales of motion. It would (v) allow one to elim- 
inate numerically troublesome high-frequency phenomena that do not influence 
large-scale eddies (Dietrich et al., 1975). Thus, a spectral approach is used 
in the present model, as described below. 

A primary question is whether the most active interactions occur among 
widely separated scales of motion, with wave lengths differing by a factor of 
ten or more, or among relatively close scales of motion. The former interactions 
are spectrally "nonlocal" and characterize instability phenomena; the latter 
are "local" and characterize cascade phenomena. Since instability phenomena 
are such that the small-scale eddies have small time scales compared to the 
associated large-scale flow, it is reasonable to assume that the effect of the 
small-scale eddies on the large-scale eddies is in a kind of quasi-equilibrium 
dictated by the instantaneous state (and, perhaps, the very recent history) of 
the large-scale eddies. This is the basic assumption of parameterization 
methods, which specify the effects of unresolved small-scale eddies on the 
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resolved eddies in terms of the instantaneous state of the resolved eddies; the 
assumption is certainly valid for molecular transport phenomena, where the 
appropriate parameterization is simple diffusion; it is not yet clear just how 
well the assumption applies to large-scale effects of macroscopic mesoscale 
atmospheric eddies, but the assumption should be more nearly valid for in- 
stability phenomena than for cascade phenomena. This suggests that the large- 
scale components of flows with one or more "spectral gaps" (i.e. with widely 
separated bands in wave number space of actively interacting wave numbers, 
and relatively inactive gaps between the bands) are probably more predictable 
than those in "turbulent" flows dominated by cascade phenomena. Thus, the 
primary question of whether the dominant interactions are nonlocal is relevant 
to atmospheric predictability. Also, if they are nonlocal (other than the inter- 
actions among the energetic long waves), then application of a spectral gap 
approach might be possible in large-scale atmospheric forecast models. Finally, 
it should be noted that the significance of interactions affecting a large-scale 
wave depends on whether they have a significant mean value on the time scale of 
the large-scale wave; thus, the relative impact of "nonlocal" interactions which 
tend to remain in a given phase relative to the large-scale wave may be larger 
than instantaneous interactions may suggest. 

2 The physical system 
The physical system is a viscous, thermally conducting, Boussinesq, incompres- 
sible fluid between two rotating horizontal plates. The only y (latitudinal) 
dependence is an imposed linear temperature variation that is constant in space 
and time. (Temperature influences flow only through its gradients, so one can 
assume no further y-dependence.) Curvature terms are ignored. With appro- 
priate choice of model parameters, eddies corresponding to baroclinic, static, 
and boundary-layer shear-induced instability occur. The baroclinic eddies are 
generally of much larger scale than the latter two types. The eddies equilibrate 
by: ( i )  vertical transports of heat and momentum; (ii) non-geostropic cascade 
of energy into dissipative, smaller horizontal-scale eddies; (iii) direct transfer 
of energy to much smaller-scale eddies. Although all eddies are affected by 
all three mechanisms, the baroclinically and statically unstable eddies of 
interest equilibrate mainly by vertical transports of heat, and the shear-induced 
eddies equilibrate mainly by vertical transports of momentum and by non- 
geostrophic energy cascade. In the atmosphere, there is, in addition to these 
mechanisms, quasi-geostrophic cascade of energy to smaller scales (Charney, 
197 1 ) , and latitudinal transports of heat and momentum. The quasi-geo- 
strophic cascade mechanism is associated with terms of the form uli)(q')/dx, 
where q is any variable whose tendency is relevant and the primes indicate eddy 
quantities (deviations from zonal averages). This mechanism is represented 
only by ageostrophic u' in the present model. The latitudinal transport me- 
chanism associated with equilibration requires latitudinal variations not in- 
cluded in the present two-dimensional formulation. A quasi-geostrophic cas- 
cade mechanism could be included in a two-dimensional model by imposing an 
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x-variation of the latitudinal temperature gradient at the surface, such as that 
associated with land-sea differences, and by including an appropriate predictive 
equation for the latitudinal temperature gradient as well as for the temperature. 
However, the quasi-geostrophic cascade phenomenon in such a model would 
be associated with moderate large-scale divergence, while the atmosphere has 
important quasi-geostrophic cascade effects associated with the nondivergent 
component of horizontal flow. Thus, the importance of the quasi-geostrophic 
cascade mechanism in such a two-dimensional model may be different from 
its importance in the atmosphere. Williams (1967) uses a model similar to the 
present one, to study important non-geostrophic effects in high-Rossby-number 
late stages of frontal development. As he notes, nonlinear quasi-geostrophic 
effects are associated with the early low- and moderate-Rossby-number frontal 
development. 

Using this simple model, some of the primary mechanisms of interest can be 
studied with greatly reduced cost and effort, while setting the groundwork for 
more efficient and more elaborate models (perhaps using a "spectral gap" 
approach). A specific relevant question is: just how complicated must the 

1 
parameterization be in order to achieve acceptable representation of large-scale 
effects of small-scale eddies? If a very complicated scheme is necessary for 
accurate parameterization of the results of this model, then even more com- 

I 
plicated schemes are probably required for the atmospheric interactions, and 

I 
~ 

the use of a "spectral gap" model might prove more efficient in such a case. 
The mathematical formulation of the laws governing the present simplified 

physical system is: 

df' - -  
dt E" = K,, rf,, + Kez Fz,, 

where 

p is the usual non-hydrostatic pressure component, E is the imposed constant 
latitudinal temperature gradient, /3 is a coefficient of thermal expansion, a. is 
the mean specific volume, which is assumed constant except in buoyancy terms, 
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and v,,, v,,, K,,, and K,, are horizontal and vertical-eddy transfer coefficients 
which are used to crudely parameterize even smaller-scale eddies than those 
explicitly resolved by the model. The model boundary conditions are: 

The flow is assumed periodic in x with a specified fundamental wave length. 

3 The numerical formulation and procedure 
For the reasons noted in the Introduction, the horizontal ( x )  variations of the 
fields are represented by Fourier series. In order to improve computational 
efficiency when high horizontal resolution is used, multiplications are performed 
in real space (using a fast Fourier transform algorithm to map between real 
and Fourier amplitude space). To assure that the products are non-aliased 
(and, thus, energy conserving), the number of real points used is twice the 
number of real Fourier amplitudes.1 To facilitate accurate boundary-layer de- 
scription while restricting the vertical resolution to about ten levels, a stretched 
vertical coordinate (z') is introduced: 

z f  = A tan { B ( ~  - :) } 
where A is a normalizing coefficient and B is chosen such that roughly 1/4 of the 
total change of z' occurs in the Ekman layer associated with the vertical eddy 
transfer coefficient v,,. A staggered grid (Williams, 1969), uniform in z', is 
used. Vertical derivatives are calculated using 

Higher order derivatives are approximated using successive applications of the 
first diflerence approximation, thus conserving flux quantities. All linear terms 
are treated implicitly in time, using a trapezoidal (Crank-Nicolson) scheme. 
The nonlinear terms are treated using a forward time difference followed by 
a trapezoidal corrector. This allows a time step2 six times greater than the 
Adams-Bashforth treatment of the nonlinear terms, with no significant increase 
in computation or storage. If all terms were treated implicitly using the trapezoi- 
dal rule, this would correspond to the numerical formulation given by Dietrich 
(1975) which conserves energy exactly in both space and time. The coupled 
linear implicit difference equations in z' are solved using a one-dimensional 
special case of the scheme described by Dietrich ( 1975). 

'Nan-aliased results can be obtained using a number of real points one and one-half 
times the number of Fourier amplitudes, thereby saving time over the algorithm used. 

T h e  model time step used for the results discussed below is about one-half the vertical 
advection CFL during the most vigorous convection. This vigorous convection follows a 
period during which the vertical heat transport by the convective ensemble increases about 
30 per cent per model time step. 
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The time marching is divided into three parts: (i) the wave-absent equations 
with initial conditions independent of x are integrated to a quasi-steady state; 
(ii) a few long waves are introduced through arbitrary temperature perturba- 
tions and low resolution equations are integrated until the waves are quasi- 
equilibrated; (iii) the high resolution equations are then integrated in time 
until quasi-equilibration is again achieved. The nonlinear terms drop identically 
from the equations for stage (i),  since w = 0 and d/dx = 0. 

Considerable savings are achieved by separating stage (iii), since a shorter 
time step and more computation per time step is required than in (i) or (ii). 
However, by using a more implicit vertical advection scheme (such as ad- 
vocated by Dietrich et a]., 1975), by subtracting out numerically troublesome 
high-frequency horizontally propagating modes (as described by Dietrich et 
al., 1975 ), and by utilizing a "spectral gap" approach advocated as here, it may 
be possible to greatly increase the computation efficiency in (iii), without 
significantly affecting the long-wave behaviour. 

4 Results 
Of primary interest in this study are high-resolution numerical experiments in 
which both large-scale quasi-geostrophic waves and small-scale convective 
boundary-layer eddies are resolved. However, several results from low resolu- 
tion experiments are of interest as well. 

a Low Horizontal Resolution Cases (With four or fewer waves) 
In the second stage of the three-step time integration procedure described in 
Section 3, the longest represented wave (the fundamental Fourier mode) dom- 
inates the flow after sufficiently long time integration. Smaller-scale eddies are 
significant only when horizontal wavelengths comparable to the depth of the 
unstable boundary layer created by the large-scale flow are resolved in the 
third stage. Although the harmonics may temporarily dominate the flow because 
of their larger growth rates at the beginning of stage (ii), the fundamental con- 
tinues to grow after the interior static stability increase caused by vertical eddy 
heat transport neutralizes the  harmonic^.^ Eventually, the harmonics decay 
and the fundamental equilibrates, with some energy cascade into the harmonics. 
Such energy cascade maintains the harmonics at a much lower energy level than 
they originally attained as unstable modes in the mean flow, since it relies on 
inefficient non-geostrophic cascade of energy. (The energy cascade is associated 
with nonlinear products of the relatively small non-geostrophic part of the 
flow.) It should be noted that a sufficiently large increase of interior static 
stability implies destabilization of the boundary layers, since the upper and 
lower boundary temperatures are fixed in the present model. However, in the 
high-resolution results described below, the boundary-layer destabilization is 
due primarily to horizontal advection, not vertical heat transport. 

A strong tendency for steady finite amplitude equilibration is found in low- 
resolution cases with Prandtl number, Pr = v,,/K,,, equal to one. For example, 

There is no beta-effect to stabilize long waves in the present model. 
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a case was run with Pr = 1, Roy = 2.rr(g/3cH/f2L) = 0.79, and Ek = v,,/fH" 
0.0005, where Ro, and Ek are thermal Rossby and Ekman numbers, and L is 
the fundamental wave length. With two waves resolved and 14 levels in a 
stretched vertical coordinate, the flow has a steady finite-amplitude equilibration. 
A similar case was run with v,, increased by a factor of ten, and all other param- 
eters unchanged, so that ROT = 0.79, Pr = 10, and Ek = 0.005. In this case, 
the equilibration is very time dependent, with strong amplitude vacillation. 
These results appear superficially to be related to the diffusive destabilization 
phenomenon discussed by McIntyre (1968); however, his background flow 
does not have finite amplitude baroclinic waves which are present here. 

b Detailed Results from a Case with High Resolution 
A high resolution case was run with ROT = 0.094, Pr = 10, and Ek = 0.0125. 
Stage two of the integration resolved four waves. Stage three included 32 waves, 
so the small-scale Rossby number is about 3. The small-scale horizontal wave- 
length is about twice the Ekman layer depth based on Ek. The vertical resolu- 
tion was eleven levels in a continuously stretched vertical coordinate that 
magnifies boundary layer regions. The finite amplitude flow at the end of stage 
two is shown in Fig. 1 (a) .  At the beginning of stage three, the newly resolved 
small-scale eddies are in a statically unstable large-scale environment, and the 
small-scale ensemble grows exponentially. The flow near the time of maximum 
small-scale activity is shown in Fig. 1 (b) .  Fig. 2 shows the extremely rapid 
growth of the small-scale eddies (the e-folding time of the heat transport by the 
convective ensemble is about one model hour) during the early growth period. 
Figs 1 (c) and 1 (d) show the flow at times later in the stage three integrations. 

Fig. 2 reveals a consistent relation between the large-scale vertical heat 
transport by the small-scale convective ensemble and large-scale flow param- 
eters. Both the mean and wave number one components of the heat transport 
(curves E and F of Fig. 2 )  tend to grow when the boundary layer is relatively 
unstable (which is reflected by curves A and B being close together and C and D 
far apart4). This clear relation suggests that accurate parameterization may be 
possible in the present model with relatively simple parameterization relations. 
This may not be true for cases in which the convective heat transport has a 
more significant effect on the large-scale flow than in the present case. It is 
expected that, in the atmosphere, convective latent heat transport and release 
has a considerably more important effect than the sensible heat transport has 
in these results from the present dry model. 

Curves E and F in Fig. 2 show the ensemble heat transport varying by about 
a factor of two even after the large initial adjustment. The dominant time scale 
is about one model day. The time dependence of the mean heat transport by a 
given wave number is even stronger, as suggested by the behaviour of wave 
numbers 23 and 24, shown in Fig. 3. 

4The fact that curves C and D being far apart reflects an unstable boundary layer is 
related to the facts that the phase of the wave number one temperature field is nearly 
independent of height, and the amplitude increases toward mid-depth (see Fig. 1 ) . 
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Fig. 1 Contour diagrams in x - z planes showing eddy flow at time steps 1, 73, 97, and 
177 of the stage-three (with 32 waves resolved) time integration. The time step 
is 1/96 day. Zonal (x) averages have been subtracted out to show eddy structure 
more clearly. The fields shown are: stream function for zonal overturnings ($); 
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temperature (T) ;  meridional velocity (0); and pressure (p) .  Local maxima are 
indicated by "+." Ranges (minimums and maximums) are given. Zero contours 
are labelled. The arrows indicate flow direction. The vertical distance is stretched 
in the boundary layers. 
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Fig. 2 Time dependence of six quantities. Abscissa is the stage three time step number. 
Ordinates corresponding to each of the six curves are indicated by letters A-F. 
The z-values given on each curve are model vertical coordinates using a vertical 
scale of ten units, with z = 0 at the bottom boundary. Curves E and F are total 
large-scale upward heat fluxes associated with the small-scale eddies; specifically, 

3 2 

curve E a (WnTn* + Wn*Tn) 
n=17 

and 
32 

curve F a I ( W n T -  1 + W -  T,,) 1 
n=17 

where W, and T, are complex Fourier amplitudes of vertical velocity and temper- 
ature fields. Curves E and F are normalized relative to the maximum wave number 
0 heat flux, which occurs at time step 68. 

Arakawa and Schubert (1974) describe a nonlinear mechanism leading to 
what they call the "adjustment time scale," which could be associated with 
this time dependence. The mechanism involves the growth, nonlinear equilibra- 
tion, and decay of convective ensembles in response to changes they induce in 
the large-scale static stability. Because of this nonlinearity, it may be difficult 
to explain the apparent natural period in the present results. In developing a 
nonlinear theory, one would have to consider changes in the large-scale "back- 
ground" state, and the period would probably exhibit hysteresis effects depend- 
ing on the initial state of the convective ensemble. Thus, it would be nice if a 
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Fig. 3 Phase-plane diagrams showing amplitude and phase relations of most active small- 
scale eddy wave components (wave numbers 23-32) at time steps 224 and 232 
of the stage-three time integration. Clockwise rotation of a vector from time step 
224 to time step 232 corresponds to eastward phase propagation. 

linear theory could explain the quasi-one-day oscillation in the present results 
and similar atmospheric phenomena. 

The Arakawa-Schubert mechanism would be the likely explanation if there 
were significant one-day changes in the boundary-layer static instability (pro- 
portional to d T / d z ) .  However, in the present results, both the mean and wave 
number one components of vertical temperature gradient vary by oilly about 
?5 per cent even in the boundary Ihyers. There is no apparent mechanism by 
which such small variations could cause the much larger variations of convec- 
tive ensemble flux in the boundary layers. (Evidence that the convective flux 
is not so sensitive to the large-scale flow was obtained from a run of the same 
case with all nonlinear interactions ignored except those involving or affecting 
the mean zonal flow. Although the static instability of the mean zonal flow is 
smaller by a factor of two than occurs under the cold dome of wave number 
one, the resulting mean zonal component of the convective ensemble heat flux 
is less by only a factor of two in this "reduced interaction" run.) 

Thus, although there may be mechanisms for one-day oscillations of the 
large-scale flow (such as through nonlinear interactions with the convective 
ensemble or an inertia wave trapped in the statically unstable boundary layer), 
the smaElness of the time variations of the large-scale static stability in the 
present results suggests the explanation of the convective ensemble heat flux 
oscillation may not depend on such large-scale time variations. A possible 
heuristic explanation not depending on such time dependence is as follows: the 
wave number one component heat transport is the net effect of contributions 
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from all wave number pairs of the form (n, n + 1 ). Each pair corresponds to 
a given triad of interactions with a wave number one component. The phase 
velocities of the two small-scale components of each triad define a characteristic 
effective group velocity. This group velocity implies that small-scale energy in 
the interacting triad propagates relative to the long-wave environment. Since 
the large-scale static stability has a strong variation in its wave number one com- 
ponent, the small-scale energy is modulated by its interactions with the large 
scale as it propagates. The total wave number one heat transport, involving 
the net effect of all such triads, would also reflect such time dependence (but 
to a lesser degree, since the phase of the wave number one heat transport may 
vary from triad to triad). In the present problem, this time dependence is large 
at first, because the wave number one heat transport is nearly in phase for all 
pairs of small-scale wave numbers during the rapid initial growth of the small- 
scale convective band. Group velocity variation in the' convective band gradu- 
ally increases the variability of this phase, and the time dependence decreases. 

This heuristic explanation assumes that most of the convective heat flux is 
associatiated with modes that have nearly the same (at least within a factor 
of two) group velocity. Otherwise, the time variation would be reduced to 
relatively small, nearly random fluctuations after the initial burst of activity. 
This raises the question of whether increasing the horizontal resolution would 
result in a wider wave number band of convective modes having significant heat 
transport and, if so, whether the group velocity would have large variation in 
the widened band. One way to reduce this possibility in the present simplified 
model is to use horizontal diffusion coefficients just large enough to significantly 
suppress wave numbers higher than the wave number most active in the absence 
of horizontal diffusion. Although the diffusion coefficients used in this study 
were chosen to be the right order of magnitude to significantly retard unresolved 
higher wave numbers, the high-resolution runs necessary to verify this choice 
have not yet been performed, because the high computation costs can be 
reduced by improved versions of the present model (as noted at the end of 
Section 3 ) . 

Whether this heuristic explanation offered for the present model time depen- 
dence may be relevant to atmospheric behaviour depends on whether there 
are significant cases (such as in east coast winter storms) where the convective 
modes transporting and releasing most of the latent heat have approximately 
uniform group velocity. If the active modes have a clear, characteristic hor- 
izontal scale, it is more likely that this will be true than if their energy is dis- 
tributed over a wide range of scales. 

The results shown in Fig. 3 indicate that the group velocities in the convec- 
tive band are of the right order of magnitude to be consistent with this argu- 
ment. That is, they are such that the energy propagates about one wave length 
(wave number one component) per model day. More convincing diagnostic 
evidence is difficult to obtain due to insufficient information on how the large 
scale modulates the small-scale convection in space and time. Separation of 
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dispersing gravity mode pairs having the same wave number5 might make the 
phase plane vectors more regular, but this has not yet been attempted. The- 
oretical analysis is very difficult, because of the strong vertical and horizontal 
variations of static stability, which has both positive and negative values in 
the convective boundary layer, and also because there might be no valid linear- 
ization of the problem. The detailed structure and boundary-layer depth prob- 
ably affect the group velocity significantly. 

The key point is that there is significant time variation of the convective 
heat transport that is apparently not due to time variations of the large-scale 
flow. That is, the time variation would probably occur even if the large-scale 
flow were exactly steady. Apparently, space variations of the large-scale envi- 
ronment can significantly modulate the convective heat transport in time as 
well as in space, whether or not the large-scale flow is steady. Besides indicating 
the potential complexity of convective heat transport parameterization, espe- 
ciany after rapid growth of a convective ensemble, this leads to the interesting 
question of what might happen if the conditions were such that the frequency 
of large-scale convective heating were close to the corresponding large-scale 
inertia-gravity frequency. A rapid growth of convective ensemble heat trans- 
port and latent heat release will itself trigger a large-scale inertia-gravity oscil- 
lation due to accompanying large-scale pressure changes. In a rapidly growing 
east coast winter storm, simple scaling considerations (Brunet, 1974) sug- 
gest that such an oscillation might make a significant contribution to large-scale 
convergence and associated precipitation. (These scaling considerations indi- 
cate that the pressure changes associated with realistic convective heat trans- 
port and latent heat release in a growing convective ensemble can induce sig- 
nificant oscillating, out-of-balance, large-scale vertical motions.) Brunet ( 1974) 
studied large-scale rainfall data from Hurricane Agnes and found evidence 
for such an oscillation, although the effect on large-scale precipitation is rather 
small in that case. 

Associated with this small-scale convective time dependence is relatively 
small time variation (about -C5 per cent) of large-scale fields, as shown by 
curves A, B, C, and D of Fig. 2. Convective ensemble heat transport and latent 
heat release may vary in a similar way in atmospheric disturbances with the 
ensemble changes being associated with relatively small changes of large-scale 
flow parameters. Note that such changes would be important in short-term con- 
vective precipitation probability forecasts. 

As suggested by Fig. 3, the most active convection occurs in a band of wave 
numbers around wave number 27. However, wave number 32 grows the fastest 
when interactions with only the mean zonal flow are accounted for. This could 
be due to the unstable boundary-layer depth being less in the mean than it is 
under the "cold dome" of wave number one, thereby reducing the growth rates 

There are two primary gravity waves associated with each wave number, travelling in 
opposite directions. 
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of the lower wave numbers relative to wave number 32. This could also be due 
to wave number 32 (the highest represented wave number) having only one 
triad through which to obtain energy from wave number one, while the lower 
wave numbers have two. All waves have equal opportunity to interact with the 
mean flow. 

The qualitative appearance of the fields shown in Fig. 1 suggests that there is 
relatively little activity in scales of motion between the large, quasi-geostrophic 
scale and the small, convective scale in the boundary layer. Fig. 4 confirms this 
quantitativity. Figs 4(a)  and 4(b)  are histograms revealing a strong gap in 
wave-number-band-averaged nonlinear heat transport interactions affecting 
large-scale temperature distribution. Fig. 4(c)  shows a much less prominent 
gap in the temperature variance spectrum that, by itself, would suggest that the 
small-scale interactions are less important than indicated by Figs 4(a)  and 
4(b) .  However, the vertical velocity spectrum gives just the opposite picture, 
so that when one multiplies the RMS vertical velocity in each band by the 
corresponding RMS temperature, the resulting histogram is much more like 
Fig. 4(a)  and Fig. 4(b)  than is Fig. 4(c). Nevertheless, one should be very 
careful in making inferences from variance spectra alone, as these do not 
necessarily reflect the relative influence of different scales of motion on the 
large scales that are to be forecast. The reason is that phase relations, averaged 
on the time scale of the large-scale eddies, also influence the time-averaged ver- 
tical heat and momentum flux quantities. 

The assumption of constant latitudinal temperature gradient used in the 
present model probably exaggerates the strength of the spectral gap indicated 
in Fig. 4, because this assumption eliminates the quasi-geostrophic cascade 
mechanism. Future studies should include this cascade mechanism, possibly 
within the framework of a two-dimensional model as mentioned in Section 2. 

Finally, an interesting point about the structure of the convective eddies is 
that, while the vertical heat flux is predominantly upward, nonlinear inertia 
effects result in small downward flux on the interior side of unstable boundary 
layers. That is, fluid elements overshoot their equilibrium levels (where their 
temperature matches the large-scale environment temperature), so that upward 
moving fluid at the top of the lower boundary layer tends to be cooler than the 
average temperature at the same level. (This result has been observed by 
Deardorff et al., 1969, in laboratory experiments.) In fact, in the absence of 
dissipative effects and interaction with fluid at other levels, a fluid element 
would have its maximum vertical velocity at such an equilibrium level. Such 
downward heat transport cools the environment above the equilibrium level, 
thereby raising the equilibrium level for ensuing fluid elements. Thus, this non- 
linear inertia effect deepens the convective boundary layer. It should also be 
noted that fluid deceleration above the equilibrium level generates gravity 
waves that can be important in momentum exchange with still higher levels. 
These nonlinear aspects of convective adjustment dynamics may be difficult to 
parameterize accurately in terms of large-scale flow parameters, although some 
schemes have been proposed for doing this (Deardorff et al., 1974). The 
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W A V E  BAND 
Fig. 4(a) Histogram showing time-averaged mean zonal heat transport by five individual 

bands of consecutive wave numbers. Horizontal scale of associated eddies de- 
creases by about a factor of two for each bar proceeding left to right. 

WAVE BAND 
Fig. 4(b) Histogram showing amplitude of time-averaged wave number one heat transport 

by each of five bands of consecutive wave numbers. 

Direct Simulation of Convective Adjustment 15 



WAVE BAND 

Fig. 4 (c )  Histogram showing temperature variance in each of five bands of consecutive 
wave numbers. 

spectral gap approach advocated in Section I may prove superior to such 
classical parameterization approaches in representing such phenomena. 

5 Concluding remarks 
The results of this study suggest that using the full dynamic equations in spectral 
form to predict the interactions among large-scale atmospheric eddies and 
small-scale eddy ensembles, without having to represent intermediate-scale 
eddies, could be more realistic than using the usual parameterization approach. 
Specifically, the results of this simplified model of dry convective adjustment 
show: 

( i )  in this model, there is a clear spectral gap in the nonlinear interactions 
affecting large-scale eddies. 

(ii) in this model, the nonlinear convective ensemble heat transport (i.e. the 
large-scale components of products of small-scale components of con- 
vective vertical velocity and small-scale components of temperature) ap- 
parently has significant time modulation, possibly due to ensemble energy 
propagation in a space-varying large-scale environment. The ensemble 
heat transport time variation appears independent of the time variations 
of the large-scale fields in the sense that the nonlinear transport apparently 
would vary significantly with time even if the large-scale fields were con- 
stant in time. 
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In view of (ii), the usual parameterization assumption that large-scale non- 
linear transports are in a kind of quasi-equilibrium dictated by the large-scale 
fields (and possibly their recent histories) might not be accurate in general. In 
order to forecast these nonlinear transports, it may be necessary to specify 
initial values of both the large-scale fields and the large-scale nonlinear trans- 
port fields. If analogous convective ensemble time variation occurs in the 
atmosphere (as, for example, in east coast winter storms), the required large- 
scale initial distributions of nonlinear transport fields could, perhaps, be in- 
ferred from the intensity of small-scale oscillations (in space or time) recorded 
by observing stations. 
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The numerical integration of the 
dynamical equations on a latitude- 
longitude grid requires excessively 
small time steps due to the con- 
vergence of meridians. Space filtering 
in the polar regions has generally 
been used to alleviate this restriction. 
Such filtering does not distinguish 

between low and high frequencies 
so that it can lead to errors in the 
meteorological modes. An alternative 
solution may lie in the use of a semi- 
implicit technique in one dimension. 
These problems are explored with the 
aid of numerical models of the shal- 
low-water equations on a sphere. 

1 Introduction 
The numerical integration of the equations governing atmospheric flow using 
a latitude-longitude grid presents certain practical problems. One of the prob- 
lems is due to the convergence of the meridians near the north and south poles. 
This property requires that a very small time step be used to avoid computa- 
tional instability. Of the various solutions that have been proposed or adopted, 
the procedure of Fourier filtering first suggested by Arakawa and tested by 
Holloway et al. (1 973) has found considerable favour. It was used by Holloway 
et al. and by Merilees (1974) with apparently no noticeable detrimental effects. 
In retrospect, we might have expected to pay a price for a benefit that appeared 
to be almost free. This paper will report on some experiments originally de- 
signed to provide unambiguous answers to the question of the relative efficiency 
of the pseudospectral algorithm and the 4th-order finite difference schemes, 
but which turned out to be a study of polar filtering errors. This occurred 
because in the experiments performed, the polar filtering turned out to be a 
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source of error, making it very difficult to compare efficiencies of the two 
numerical schemes. 

The numerical experiments performed are novel in the sense that the exact 
solution of the equations is known. This is accomplished by artificially forcing 
the equations by terms that imply an exact specified solution. Thus the numer- 
ical results are always compared to the exact solution. The resolution of the 
numerical models is large compared to the wavelength of the specified solution 
so that the resulting errors are relatively small. Nevertheless, these errors are 
bothersome because they appear to neutralize any possible gain from higher 
order approximations to derivatives. 

As an alternative to polar filtering some experiments with a one-dimensional 
semi-implicit algorithm have been performed, and we present a report on these 
experiments as well. 

2 The experimental approach 
When experiments are performed to test different numerical schemes or 
approaches one usually begins testing with relatively simple situations. For 
example, one may test stationary solutions as did Merilees (1 973), and Wil- 
liamson and Browning (1973). This is very useful since one knows the exact 
solution of the equations. In the case of the nonlinear shallow-water equations, 
this is the only known solution of the equations. Lacking the knowledge of the 
solution of the equations one is forced to perform sensitivity experiments. That 
it, one may perform a control experiment with very high resolution in space or 
time and regard such an integration as the exact solution. Other experimental 
results are then compared with the standard. The approach taken here is some- 
what different. A solution is specified and then the equations modified to fit this 
solution. The modification takes the form of a forcing function applied to the 
basic shallow-water equations on a sphere. Thus the experiments are concerned 
with simulating solutions of the equations, 

au - g ah -- u a~ v au -- 
at acos  + ah a cos + ah a a+ + f * v  + GI@, 4, t) (1) 

a~ - g ah u av v av - - -  
at  a a+  acos  + ah a a+  f * u  + G2(4 4,  t) 

ah - - - - -  a 
at 

[ ( h )  + - ( I  0 s  ) + G3(h, 4, l )  
a cos 4 ax a+  I 

where f * = 2 n  sin + + u tan +/a and the other symbols have their usual mete- 
orological meaning. The functions GI, GI", G3 are specified functions such that 
the solution of ( 1 ) to (3  ) is given by 

v = - maK cosm-'+ sin + sin(mh - wt) (5) 
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We note that the solution is nondivergent for all time and is in a state of near 
geostrophy. The required expressions for GI, G2, G1 may be obtained by sub- 
stituting (4 )  to ( 6 )  into (1  ) to (3) .  In all of the experiments reported here, 
m = 4 while K = A = 7.848 x 10-6 s-I and ho = 3000 m. The structure of 
the specified solution is shown in Fig. 1. With the given conditions the specified 
solution translates eastward at a speed of 12.2 degrees of longitude per day. 
In this map and any subsequent maps we present only one quarter of the entire 
field because of their symmetry properties. The "window" covers an interval 
of 180' of longitude, 90' of latitude. Both coordinates vary linearly. 

The experiments proceeded as follows. Initial conditions obtained from 
the specified solution were applied to the numerical model, which was then 
integrated for a period of 8 days. The numerical solution obtained was then 
compared with the specified solution either in the form of difference maps or 
in an area-weighted RMS sense for each of the three variables. 

The models used were formulated on a latitude-longitude grid with the same 
angular interval in both directions. The grid is displaced one-half of a grid 
length away from the poles. The 4th-order model and the pseudospectral model 
are as described in Merilees (1974) and are identical except for the evaluation 
of derivatives. One important point is that the polar filter operates so that wave 
numbers greater than 3 are filtered at the grid latitude circle closest to the poles; 
then wave numbers greater than 9 at the next closest; wave numbers greater 
than 15 at the next, and so on. Thus wave number 4 is filtered at the grid 
latitude closest to the poles. The results of the numerical experiments were 
looked at in two ways. Firstly, we have calculated the ratio of the area-weighted 
root mean square difference between the numerical solution and the specified 
solution to the square root of the variance of the analytical solution. That is, if 
X ( h ,  +, t )  represents the analytical solution of one of the variables and 
X * ( A ,  4, t )  represents the corresponding numerical solution, we have cal- 
culated - 

E Z  = (X - X * y  
P 

and v 2  = ( X  - m2 
where 

and then taken the ratio of E to V as a relative measure of error. This ratio 
expressed in per cent is what is meant by the error plotted in the graphs. All 
graphs presented show the relative errors in the u-field. The relative errors in 
the u and h fields are very similar to that of the u-field as long as we compare 
the differences with that part of the u and h fields that vary with time. 

Secondly, we have studied the distributions of the differences between the 
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Fig. 1 The structure of the specified solution. Only one quarter of the global field is pre- 
sented because of the symmetry. The equator is at the bottom of the "windows"; 
the pole at the top. The contour intervals are; u, 15 m s-I; u, 30 m s-I; h, 300 m. 

1 2 3 4 5 6 7 8  
DAYS 

Fig. 2 The relative error in the u-field as a function of time obtained with different 
models employing a polar filter and a time step of 300 s. Open circles correspond 
to FD4-32, closed circles to FD4-64, and crosses to PS-32. 

numerical solutic 
isopleth form. 

A typical resu: 
in Fig. 2 showing 
for a 4th-order 
4th-order model 
with 32 grid poir 
We note that the 
On the other han 
of the FD4-64 af 
to test the hypo 
equivalent to a 4 
of some concern 
pseudospectral n 
very slowly after 

For these reasl 
carried out. 

3 Experiments H 

In order to try t~ 
error in the psel 
pseudospectral n 
Fig. 3 we presen 
step of 60 s. We 
almost the same 
by two orders of I 

spectral model i! 
model appear to ' 
is supported by F 
the results of a th 
ical curve is obtz 
propagating wav 
The time differer 
1972). 

The final link 
60 s, but using th~ 
obtained are alm 
and are thus not 
to be due largely 
by Fig. 5, which 
as a function of 1 

a polar filter and 
were multiplied 1 
in accordance m 
4th-order scheml 

22 Philip E. Merilees, Pierre Ducharme, and Ghislain Jacques 



r of the global field is pre- 
bottom of the "windows"; 
'; u, 30 m s-'; h,  300 m. 

obtained with different 
Open circles correspond 

"2. 

numerical solution and the specified solution and these results are presented in 
isopleth form. 

A typical result and the one which led to this study of the polar filter is given 
in Fig. 2 showing the error in the v-component of the wind as a function of time 
for a 4th-order model with 64 grid points on a latitude circle (FD4-64), a 
4th-order model with 32 grid points (FD4-32) and a pseudospectral model 
with 32 grid points (PS-32). Each of these were run with a time step of 5 min. 
We note that the error of the PS-32 is considerably less than that of the FD4-32. 
On the other hand the error of the PS-32 grows exponentially and exceeds that 
of the FD4-64 after four days of integration. Since the experiments were meant 
to test the hypothesis that the pseudospectral algorithm should be at least 
equivalent to a 4th-order scheme of twice the number of points, this result was 
of some concern. Further, the characteristics of the growth of error in the 
pseudospectral model were bothersome since the finite difference error grew 
very slowly after what appeared to be an initial adjustment period. 

For these reasons various experiments with and without the polar filter were 
carried out. 

3 Experiments with and without polar filter 
In order to try to discover what was the cause of the exponential growth of 
error in the pseudospectral model, the first step was to integrate both the 
pseudospectral model and finite difference models without the polar filter. In 
Fig. 3 we present the results of such integrations where we have used a time 
step of 60 s. We note that the errors for the finite difference models remain 
almost the same while the errors in the pseudospectral model have decreased 
by two orders of magnitude. Further the growth rate of the errors in the pseudo- 
spectral model is considerably less. In fact the errors in the pseudospectral 
model appear to be almost entirely time truncation errors. This latter statement 
is supported by Fig. 4, which shows the errors in the pseudospectral model and 
the results of a theoretical calculation of the time truncation error. The theoret- 
ical curve is obtained from the solution of the time difference equation for a 
propagating wave whose frequency is equal to that of the specified solution. 
The time differencing is leap-frog, modified by the Robert filter (see Asselin, 
1972). 

The final link in the chain is provided by an experiment with a time step of 
I 60 s, but using the polar filter (even though it is unnecessary). The error curves 

obtained are almost indistinguishable from the case with a time step of 300 s, 
and are thus not presented. The errors in the finite difference models appear 

I to be due largely to space truncation error. This latter statement is supported 
by Fig. 5, which shows the error in the finite difference model at various times 
as a function of the number of grid points. Each of the cases was run without 
a polar filter and a time step of 60 s. The values plotted for a resolution of 64 
were multiplied by 16, while those of resolution 128 were multiplied by 256 
in accordance with an expected behaviour of space truncation errors of a 
4th-order scheme. Except for the last two days of the integrations, the errors 
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Fig. 3 Same as Fig. 2 except no polar filter and a time step of 60 s. 
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Fig. 4 Comparison between errors in the u-field for a PS-32 model with a time step of 
60 s and no polar filter (dashed line) and the theoretical error associated with time 
discretization of a simple eastward propagating wave. The ordinate is such that 
10 corresponds to a relative error of 0.001 %. 

4 The structure of th 
Even though the use 



I 
8 

tep of 60 s. 

with a time step of 
associated with time 
lrdinate is such that 

R'O - 
0 
a - 
a 
w e -  
$ - 

6 - 
- 

4 - 

I 2 3 4 5  6 7 8  

DAYS 
Fig. 5 The relative error in the u-field as a function of time obtained with different res- 

olutions of the finite difference model with no polar filter and a time step of 60 s. 
Open circles correspond to FD4-32, closed circles to FD4-64, and crosses to 
FD-128. Values for FD4-64 were multiplied by 16 and for FD4-128 by 256. 

seem to follow reasonably well what one would expect from space truncation 
errors. 

One might expect the space truncation error to be so small in the case of the 
finite difference of resolution 128 that the error due to polar filtering would 
show up. This is not the case, however, because with a resolution of 128 points, 
the closest grid latitude (where wave number 4 is filtered) is considerably 
closer to the pole, and so the effect produced by filtering will be correspondingly 
less severe. 

These results permit us to conclude that the application of the polar filter 
produces errors that grow rapidly and within a relatively short period of time 
may nullify any gain in accuracy obtained from the use of the pseudospectral 
algorithm. This latter statement is supported by the results of an experiment 
with the PS-32 model and a special polar filter. The special polar filter does 
not eliminate completely any wave number, but extrapolates the amplitudes 
from a specified latitude in accordance with the near-pole behaviour of Fourier 
amplitudes (Orszag, 1974). The results of that experiment showed a similar 
exponential growth rate as the experiment with the regular polar filter except 
that the absolute values were smaller. 

4 The structure of the error due to polar filtering 
Even though the use of polar filtering causes a growing error in the experiments 
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described here, the absolute value of these errors is not very large. Errors of 
the order of 1 to 10% translate into absolute values of 0.3 to 3 m s-l in the 
north-south component of the wind in a RMS sense, and these occur only after 
about eight days of simulation. Compared to other sources of error in predic- 
tion models, these magnitudes are certainly quite small. On the other hand, 
the model and initial conditions used are certainly quite simple compared to 
prediction and general circulation models that are in general use. Further, the 
fact that the error at least begins in the polar regions is bothersome because of 
the past history of difficulties in the long-term simulation of the atmosphere 
(Holloway et al., 1973). Thus it was deemed important to examine more 
closely the structure of the error due to polar filtering. During the eight-day 
integrations, the polar filtering does not have much effect on the errors of the 
finite &fferences models for reasons stated above. Thus we will examine the 
structure of the errors in the pseudospectral model produced by the polar 
filtering and compare it with the sorts of errors obtained when no polar filtering 
is applied. 

In Fig. 6 we present the difference between the numerical solution and the 
specified solution after 1.5 days in the case of no polar smoothing, while Fig. 7 
has polar smoothing applied. We note that the polar smoothing has generated 
errors of the order of 0.2 m s- l in the wind fields near the poles. This is basically 
due to the fact that the specified solutions have wind component values of this 
order in this region. The errors in the case of no polar smoothing are, as ex- 
pected, of very small magnitude and have a structure very much the same as 
the varying time part of the specified solution. This basic structure persists for 
the entire eight-day period of integration as shown in Fig. 8. 

The error field in this case is originally 90' out of phase with the specified 
solution. However, it very rapidly propagates to be about 180" out of phase 
and then maintains this relative phase by translating with the same phase speed 
as the specified solution. This behaviour indicates that the error is largely due 
to the smoothing effect of the Robert filter. 

The error field in the case of the polar filter (Fig. 9 )  has a rather different 
behaviour. The phase relation to the specified solution is difficult to determine 
as the error field is strongly tilted with latitude. Since the specified solution has 
no tilt, the error is due to the tilt in the numerical solution. The tilting produces 
transports of momentum and we notice a deficit of momentum in latitudes 
around 60°N (and south) and an excess of momentum in the equatorial lat- 
itudes. We also note that the numerical solution has transported mass from 
lower latitudes to the higher latitudes. 

5 An alternative to polar filtering 
We have seen that the polar filtering produces errors which have the effect of 
changing the latitudinal distribution of mass and momentum under the condi- 
tions of these experiments. Such a tendency could be detrimental to the success- 
ful simulation of long-term distributions of atmospheric variables, even though 
the magnitude of the errors in these experiments is small. There is an alternative 
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! Fig. 6 The structure of the error fields after 1.5 days obtained with the PS-32 model, a 
time step of 60 s and no polar filter. Contour intervals: u, 2 X 10-'m s-'; o, 
3 X 10-'m s-';  h ,  4 X 10 "m. Geometry is the same as Fig. 1. 

Fig. 7 Same as Fig. 6 except with the polar filter and contour intervals: u ,  0.1 m s-'; u, 
0.1 m s-'; h, 1 m. 
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Fig. 8 Same as Fig. 6 except after eight days and contour intervals: u, 6 X 10-'m s-I; u, 
6 X 10-4m s-'; 11, 10 X 10-"m. 

Fig. 9 Same as Fig. 7 except after eight days and contour intervals: u, 1 m s-'; u, 1 m s-l; 
h. 10 m. 
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to the polar filtering other than an explicitly stable time step, which makes use 
of a semi-implicit algorithm. 

The semi-implicit algorithm was designed by Robert (1969) to operate in 
conjunction with a spectral model. Its application to the shallow-water equa- 
tions over the sphere requires the solution of a Helmhotz equation. In terms 
of the spectral model such an application is relatively simple; in terms of a 
grid point model it is considerably more difficult. However, our interest in such 
an algorithm is simply to avoid the small time step necessary because of the 
convergence of meridians. 

Thus we apply the algorithm in a one-dimensional sense along latitude 
circles, in which case we require the solution of a one-dimensional Helmhotz 
equation with periodic boundary conditions. Such a solution is easily accom- 
plished with a fast Fourier transform (FFT) . 

We may write (1 ) to ( 3 )  without approximation as 

where 

and is a function of latitude and time, and A, B, C represent all the remaining 
terms. We treat (9 )  explicitly and the terms A and C explicitly, so that the 
semi-implicit algorithm will take the form 

If we now express the fields, u, h, A, C in a finite Fourier series at the particular 
latitude, then ( 1 1 ), (1 2 )  will be transformed into a number of pairs of algebraic 
equations to be solved for the new amplitudes of the Fourier coefficients of 
u and h which can then be used to reconstruct the fields at the grid points. This 
procedure will be the same for both the pseudospectral algorithm and a finite 
difference model, except the finite difference model will introduce a response 
function multiplying the differentiated terms. Of course one can generalize 
the procedure to include many other terms simply by expressing each term 
as the sum of two terms, one of which is linear with respect to functions of 
longitude. In the experiments we have performed, we have only treated the 
pressure gradient and divergence terms in this way. 

1 
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A smoothed representation of the relative error in the u-field as a function of 
time obtained with the PS-32 model employing the one-dimensional semi-implicit 
algorithm and a time step of 600 s. 
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Fig. 11 Same as Fig. 10 except additional curves with time steps of 300 s (dotted) and 
150 s (dashed). 

The code for the pseudospectral model was modified to apply this algorithm 
and the polar filter was removed. Experiments of the same nature as previously 
described were then performed. It was found that the model with the semi- 
implicit algorithm was stable with time steps twice as large as that permitted 
with the polar filtering. This is consistent with the fact that the polar filter was 
applied only for latitudes greater than 60°N and 60's. The results are shown 
in Fig. 10 for the v component of the wind. Note that the relative error remains 
less than 0.05% throughout the eight-day integration whereas the relative 
error using the polar filter reaches 1 % by the sixth day. The error level at this 
point is about 10 times larger than that obtained with the explicit time differ- 
encing, but we have used a time step 10 times larger. The errors obtained with 
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! Fig. 12 The structure of the error fields after eight days with the PS-32 model employing 
the one-dimensional semi-implicit algorithm and a time step of 600 s. Contour 
intervals: u, 0.01 m s-': zj, 0.015 m s-'; h, 0.2 in. Geometry is the same as Fig. 1. 

the one-dimensional semi-implicit algorithm vary approximately linearly with 
At, as shown in Fig. 11. They appear to be due to the use of the Robert filter 
which has a slight smoothing effect on the numerical solution. This idea was 
supported by experiments performed with a different value of the Robert filter 
coefficient, which showed that as it was increased the errors increased in a 
proportional way. 

The structure of the error fields after eight days of integration are shown in 
Fig. 12. We note that the errors show no tendency to have a "tilt" nor do they 
indicate any accumulation of mass nor momentum in any latitude belts. 

6 Conclusion 
The use of polar filtering to increase the time step in a numerical model of the 
shallow-water equations has been shown to cause errors that work against the 

1 increased accuracy expected from higher order difference schemes. Further, 
the structure of the errors indicates that polar filtering can lead to artificial 

1 transports of mass and momentum. It is not clear if similar effects will be pro- 
duced in realistic global circulation models, but it may be worthwhile to per- 
form some control experiments without polar filtering. 

The one-dimensional semi-implicit algorithm performed extremely well in 
the cases tested. Since the algorithm can be solved using a FFT, it can be effi- 
ciently implemented. In fact, as a replacement for a polar filter its implemen- 
tation requires little additional computer time since the polar filter uses FFTs 
to accomplish its purpose. 
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The use of a semi-implicit scheme in order to increase the time step also 
makes sense from a physical point of view, because it modifies only the high- 
frequency motions whereas the polar filter modifies both the high frequencies 
and low frequencies. 
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ABSTRACT 

During the summer of 1973, two 0.25 mi were also operated during 
networks of hail detectors were 
established in a hail-prone region of 
southern Alberta, in conjunction with 
the hail suppression investigations 
being carried out by Alberta Hail 
Studies (ALHAS).~  Two hundred and 
seventy-two farmer volunteers main- 
tained the detectors in two regions 
totalling 1600 mi2, providing a mean 
station spacing of 2.5 mi. Five dense 
networks with a detector spacing of 

August. 
These detectors successfully re- 

corded the hailfall on 17 severe thun- 
derstorm days. The areal coverage of 
the hailfall was found to be less spo- 
radic than was popularly believed, and 
the data revealed two different spatial 
scales of hailfall variation. A prelim- 
inary examination of the significance 
of these results for the design of pre- 
cipitation (and particularly hail) mea- 
suring networks is undertaken. 

1 Introduction 
Hail detectors, consisting of one-foot square pads of one-inch thick styrofoam 
wrapped in household aluminum foil, were independently developed and used 
with some success by Schleusener and Jemings (1960), and by Decker and 
Calvin ( 1961 ) . Such "hailpads" have since been used successfully in Illinois 
(Changnon, 1969; Changnon and Towery, 1972) and in the midwest states 
(Hagen and Butchbaker, 1967; Butchbaker, 1968; Morgan and Towery, 
1974). 

A preliminary study was made to determine the feasibility of using hailpads 
in Alberta, both to discriminate where hail did or did not fall and also to obtain 
quantitative hailfall measurements. It was hoped that such data could be related 
to crop damage by hail, and aid in the evaluation of hail suppression efforts. 

The theory, laboratory calibration, hailpad analysis techniques, network 
design, and results of this 1973 study were detailed by Strong (1974). Field 
verifications of the hailpad calibration have subsequently been presented by 

'Current affiliation: Alberta Hail Project, Mynarski Park, Alberta. 
'The name was changed in 1974 to the Alberta Hail Project which is under the auspices 

of the Alberta Weather Modification Board, Three Hills, Alberta. 
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Lozowski and Strong ( 1975 ) . The purpose of this paper is to review briefly 
the theory and operation of hailpads, to explain some important aspects of the 
1973 measurements, and to relate these results to other field measurements of 
hailfall and to the design of future networks. 

Theory 
By solving the equation of motion for an idealized spherical hailstone in free- 
fall equilibrium, the terminal velocity w,, is found to be a function of the di- 
ameter DH: 

The following parameters were found to be most appropriate for typical Alberta 
conditions: drag coefficient CD = 0.6, hailstone density p = 0.89 g ~ m - ~ ,  surface 
air density = 1.07 x g ~ m - ~ ,  g = 981.3 cm s-5 Using these values, ( 1  ) 
becomes : 

w, = 13.5 D~~ (2) 
where W T  is in metres/second and DH in centimetres. This type of relation has 
been confirmed by Lozowski and Beattie ( 1975 ) , who used high-speed photo- 
graphy to measure the terminal velocity of hailstones up to 1 cm in diameter 
during several 1974 Alberta hailstorms. They found that the curve W T  = 13.3 
DH: was a reasonable fit to their measurements. The kinetic energy of impact 
for such a hailstone is 

or 4.23 x DH4 Joules for the same Alberta conditions, where DH is in 
centimetres. 

The Hailpad Concept and Calibration 
A hailstone hitting a hailpad leaves a dent in the styrofoam-aluminum foil 
combination of a volume proportional to the kinetic energy absorbed by the 
hailpad (Lozowski and Strong, 1975) .  As a consequence of this result, a rela- 
tion between hailstone diameter and dent diameter can be derived, for example, 
by dropping steel spheres onto hailpads. These must fall from an appropriate 
height to simulate the impact energy of spherical hailstones of the same di- 
ameter. The use of real ice spheres for calibration is virtually precluded by the 
requirement for drop heights of more than 5 0  m if the larger ice spheres are to 
approach their terminal velocity. 

For the types of styrofoam and aluminum foil used in this work,3 the relation 
between dent diameter ( D D )  and hailstone diameter ( D H )  was found to be 

DH = 0.15 + 1.1 1DD - O.O9DI,' ( 4 )  
for 0.5 cm 4 DH 6 5.5 cm. 

3DOW Chemical Styrofoam type *FR and Reynolds Wrap heavy-duty aluminum foil 
(0.0010 in thickness). 

In using ( 4 )  to re1 
calculate hailfall ener; 
assumptions are mad 
upon impact; hailsto. 
a negligible contribut 
hail dents are readily 
raindrops, bird pecks, 

Measurement Uncertr 
Hailpads can be use 
terminal velocity, im 
(Strong, 1974) that 
impact energy of a si 
sphericity, drag coeffi 
measurement, was &( 

hailstone, and the acl 
time, it could be quite 
or five orders of magr 
in the comparison of 
1974 ) to be considem 

One other source c 
sizes from dents made 

where w, is the winc 
elliptical shape. For 
measured, and this wi 
lar dent which would 
This assumption is rt 
expected to contribut 
depth. Thus, the mea 
proximately the verti 
include the horizontal 

Hailpad Networks 
Fig. 1 shows the two 
was within the ALHAS 

seeding experiments 
hailpad stations were 
(15.5 km2), or a me: 
ological stations recc 
humidity. Previous ar 
gested that typical hai 
and Wojtiw, 1971). 
measuring point hail 

34 G.S. Strong and E.P. Lozowski 



to review briefly 
nt aspects of the 
neasurements of 

lailstone in free- 
nction of the di- 

~r typical Alberta 
19 g ~ m - ~ ,  surface 
these values, ( I ) 

(2) 
)e of relation has 
igh-speed photo- 
i cm in diameter 
curve W T  = 13.3 
energy of impact 

, where DH is in 

m-aluminum foil 
absorbed by the 

this result, a rela- 
ved, for example, 
n an appropriate 
of the same di- 

precluded by the 
ce spheres are to 

~ r k , ~  the relation 
s found to be 

(4)  

uty aluminum foil 

In using (4 )  to relate dent diameters to hailstone diameters, and thereby to 
calculate hailfall energies from the recorded hailpad dents, several other implicit 
assumptions are made. These are that: hailstones are hard and do not shatter 
upon impact; hailstones which impact a second time after bouncing provide 
a negligible contribution to the total impact energy derived from the hailpad; 
hail dents are readily distinguishable from dents made by other objects such as 
raindrops, bird pecks, etc. 

Measurement Uncertainties 
Hailpads can be used to estimate hailstone size, and hence to infer mass, 
terminal velocity, impact momentum, and impact energy. It was estimated 
(Strong, 1974) that the maximum combined absolute error in the measured 
impact energy of a single hailstone due to the assumptions about hail density, 
sphericity, drag coefficient, air density, and to uncertainties in calibration and 
measurement, was 2 6 5  % . Although this is an extreme value for an individual 
hailstone, and the actual error in the hailpad total will be smaller most of the 
time, it could be quite acceptable when dealing with energies ranging over four 
or five orders of magnitude. It should also be pointed out that the relative error 
in the comparison of two hailpads similarly exposed can be shown (Strong, 
1974) to be considerably less than this. 

One other source of error must be mentioned - that of estimating hailstone 
sizes from dents made by wind-blown hailstones. Here, the total impact energy is 

elT = el + e~ = $m(wTZ + wHZ) (5) 

where W H  is the wind speed. In this case the hailpad dent is elongated to an 
elliptical shape. For such dents, only the minor axis diameter (Dm) was 
measured, and this was assumed to be equal to the diameter (D,) of the circu- 
lar dent which would have been made by the same hailstone falling vertically. 
This assumption is reasonable since the horizontal partition of the energy is 
expected to contribute largely to elongating the dent and not to increasing its 
depth. Thus, the measure of impact energy obtained from the hailpad is ap- 
proximately the vertical partition ( e l )  of the energy alone, and it does not 
include the horizontal partition (eH) of the energy, which can be quite large. 

Hailpad Networks 
Fig. 1 shows the two main hailpad networks of 1973. The Southern Network 
was within the ALHAS area of total cloud seeding, while only a few single storm 
seeding experiments were conducted over the Northern Network. In all, 272 
hailpad stations were maintained, with an average station density of 1 per 6 mi2 
(15.5 km2), or a mean linear spacing of 2.5 mi (4.0 km). Five meso-meteor- 
ological stations recorded additional data on winds, rain, temperature, and 
humidity. Previous analysis of volunteered hail reports from local farmers sug- 
gested that typical hailswaths in Alberta were 2-5 mi (3-8 km) wide (Summers 
and Wojtiw, 1971). Consequently, in order to test the representativeness of 

I measuring point hailfalls every 2.5 mi, five dense networks were operated 
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Fig. 1 The 1973 Alberta hailpad networks. 
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letworks. 

during August, each covering an area of either 1 mi2 or 0.25 mi2, and having 
hailpad spacings of 0.25 mi (one hailpad per 0.1 km2). The locations of the 
meso-meteorological stations and dense networks are indicated in Fig. 1. 

Farmer volunteers carried out most of the daily maintenance of hailpad sites. 
Lack of time and money precluded the use of special hailpad stands, although 
the calibration had been made with a firm underlying surface. Instead, the hail- 
pads were nailed to the ground with two 6 in spikes inserted through opposite 
corners. Subsequent field tests showed that this resulted in an under-estimate 
of impact energy ranging from 5 to 25%, depending on the softness of the 
surface underlying the hailpad. 

2 Principal results 
Seventeen hailstorms struck the two main networks during the period 25 June 
to 27 August inclusive. A total of 763 hail-dented pads were collected for the 
study, yielding point values of impact energy ranging from 10-I to 2 x 1 O3 J m-2. 
Fig. 2 depicts four of these hailpads with brief summaries of the derived data 
in the captions. The two holes in opposite corners of each pad were made by the 
spikes during installation. The wind estimates were made from the angles of 
dent streaks on the hailpad edges, although such estimates will not be discussed 
here. 

One of the reasons for making hailpad measurements is to try to find rela- 
tions between hailfall and crop damage that could be applied to the evaluation 
of the possible benefit of hail suppression efforts. Confidential hail insurance 
statistics for point locations were not readily available. Instead, less accurate 
crop damage estimates were obtained from hail report cards submitted by 
hailpad operators. Such estimates may unfortunately be biased and they may 
not be strictly comparable because they do not allow for differences in the time 
in the growing season, soil types, farming methods, local meteorological varia- 
tions, damage caused by rain water run-off, and so on. In addition, it was not 
known whether the farmer estimated damage at the hailpad site or at another 
location on his farm where the hailfall may have been different. The major crop 
types at hailpad sites were barley, oats, and rape, the latter being the most 
susceptible to hail damage. 

In spite of such uncertainties in crop damage estimates, we attempted to 
see whether a relation between hailfall impact energy and crop damage could 
be determined (Fig. 3) .  The implication of this scatter diagram is that relatively 
little damage (<20% ) seems to occur unless the impact energy exceeds a 
lower critical value of about 50 J m-2. Beyond an upper critical energy of 
about 450 J m-2, the damage was always 100%. In between, a considerable 
scatter exists which can be reduced by more careful measurements of crop 
damage and the factors related to it. In Fig. 3, we have somewhat arbitrarily 
postulated a logarithmic dependence of crop damage upon impact energy as 
given by the straight line. 

Thus, although impact energies can range over four or five orders of magni- 
tude, the most important part of this range lies between about 50 and 450 J m-2, 
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Hailpad 2651. site G76: 16/Aug/73. Hailpad 1656. site G l ;  16/Aug/73. 

DH(mar )=2 .0  om: MH=160 g m.': DH(max)=2.00rn:  MH-1458 gm-'; 

E1=21  J m": wind SW/light. El = 164 J m-': wind calm. 

Hailpad 2621. D.N. X10: 18/Aug/73. Haflpad 2003,  site Q4:  24/Aug/73. 

DH(rnax)=3.8 cm: MH=5256 gm-2:  D ~ ( m a x ) = 1 . 3  cm: MH=2860 g m-*: 

E l =  993 J m.': wind W/56 mph. EI=182  J m-'; wind NNEllight. 

Fig. 2 Four 1973 hail-dented hililpads with measured values of maximum hail size, hail 
mass, impact energy, and winds. 
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Fig. 3 Impact energy vs per cent crop damage (based on farmers' estimates). The dots 

are individual measurements. The line is a logarithmic relation joining the lower 
critical energy (50  J m-'1 and the upper critical energy (450 J m-'). 

since these values determine whether a farmer suffers a small or total crop loss. 
Fortunately, this is also the range of greatest accuracy for the hailpad, since it 
lies above the energy range where a very few dents may not be a representative 
sample, and below the regime where multiple dents and styrofoam breakage 
lead to additional uncertainty. 

Another scatter graph was prepared for the total impact energy by adding to 
the abcissa values, the horizontal partition of impact energy due to the wind 
(obtained from farmers' estimates). This yielded an upper critical energy of 
around 800 J r2, a result similar to that obtained by Hagen and Butchbaker 
( 1967). The relations between crop damage and other hailfall parameters such 
as impact momentum or hail mass were also examined, with a similar degree 
of scatter being found in each case. 

Distributions of  Energy Values in Alberta, North Dakota, and Illinois 
As a comparison with bther hailpad studies, Table 1 shows the distributions of 

, site Q 4 ;  2 4 / ~ u g / 7 3 .  impact energies for the 1973 ~ i b e r t a  network, for North Dakota (Hagen and 

lcrn; M H = 2 8 6 0 g m - 2 ;  I 
Butchbaker, 1967) and for Illinois (Changnon and Towery, 1972). The un- 
usual energy ranges result from the conversion of the units it-lb f t 2  which were - 

wind NNE/light. used in the-U.S. studies. The energy-damage relation of Fig. 3 applied to Table 

~f maximum hail size, hail 1 suggests that about 68% of the hailfall recorded within the Alberta hailpad 
networks during 1973 caused nil or light crop damage (less than 50 J m-2). 
About 27% caused moderate to severe damage (50 to 450 J m-2), while about 

I 5% resulted in complete crop loss (greater than 450 J m-2). 
I 

I A greater proportion of light hailfalls were recorded in Alberta with 87% 
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TABLE 1. Comparison of hail intensity distributions in Central Alberta, 
North Dakota (Hagen and Butchbaker, 1967), and Illinois 
(Changnon and Towery, 1972) 

Per cent of Total Number of Hailpads 
Range of 

Impact Energy Central Alta No. Dakota Illinois 
(J m-2) (a) 1973 (b) 1966 (c) 1971-72 

0.1- 50 67.5 A - 
50.1- 100 13.8 - - 

100.1- 146 6.0 - A 

0.1- 146 87.3 83.0 75.2 
146.1- 292 5.4 8.7 9.2 
292.1- 450 2.0 3.7 
450.1-1000 4.4 4.0 

111.3 

1 1000 0.9 0.6 4.3 

No. of hailpads in study 763 319 913 

being L146 J m-2 (10 ft-lb ft-2), compared with 83% in North Dakota and 
75% in Illinois. The higher figure for Alberta may be a real climatological dif- 
ference, or it may mean that a more sensitive combination of styrofoam and 
aluminum foil was used. The minimum value in the North Dakota data was 
5 J m-2 compared with 0.1 J m-"or both the lllinois and Alberta data. 

3 Impact energy analysis of hailswaths 
The maps of impact energy for the 17 recorded hailstorms were subjectively 
contoured with isopleths of 0, 25, 50, 100, 200, 400, and 800 J m-2. The 
contour increments were multiplicative because the energy gradient tends to 
increase along with the energy. Near the centre of the hailswaths or where the 
energy exceeded 800 J m-2, the gradients were usually too high for adequate 
resolution with an average hailpad spacing of 2.5 mi ( 4  km) . Subjective contour 
smoothing was minimal, and never at the expense of violating a station value of 
impact energy. A feature of these energy maps is the spatial continuity of the 
contours, especially the zero contour. This result tends to contradict a popular 
notion that hailfall patterns are very sporadic by nature. At least, if hailfall 
patchiness in these storms did occur, it must have been on a scale smaller than 
that resolvable by the present network. Only the hailstorms of 16 August and 
23 August will be discussed here, since additional data from the dense networks 
were available for these days. 

16 August 1973 
This storm affected only the northern hailpad network, and it is depicted in Fig. 
4. Recalling that energies exceeding 450 J m-* usually cause 100% crop 
damage, this storm stands out as a major one. In addition to causing crop 
damage, the hail also smashed windows and vehicle windshields, killed small 
farm animals, and even pierced holes in barn roofs. It  consisted of two main 
hailswaths, with the most severe one (according to other sources) all but 
missing the hailpad network. The southern swath (and second one in time) has 
two maxima, about 15 mi (24 km) apart. For the 17 hailstorms studied, this 
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Fig. 4 Pattern of impact energy ( J  m-') over the Northern Network on 16 August 1973. 

distance between maxima along a single swath varied from 10 to 15 mi (16 to 
24 km), with an average of 12 mi (19 km). We shall refer to it as the wave- 
length of longitudinal variation. 

Noting that dense network "X" (DNX) appears to have experienced impact 
energies exceeding 800 J m-2, we now turn to this smaller scale of 25 hailpads 
on one square mile plus two main network hailpads. Fig. 5 portrays both the 
individual values (upper right of site symbol) and the contours of impact 
energy, as well as the number of golfball or larger size hailstones per hailpad 
(in parenthesis below the symbol). Hail sizes in Alberta are reported in terms 
of familiar objects, viz.: shot, less than 0.6 cm diameter; pea, 0.6 to 1.2 cm; 
grape, 1.2 to 2.0 cm; walnut, 2.0 to 3.2 cm; golfball, 3.2 to 5.2 cm; larger than 
golfball, greater than 5.2 cm (Strong, 1974). With 12 of the 27 values of energy 
being less than 800 J m-*, a different scale of hailfall is immediately evident. 
The wavelength or distance between maxima on the fine scale appears to be 
about 1 mi (1.6 km),  in contrast to the 10 to 15 mi (16 to 24 km) resolved by 

r 
the larger scale network. 

The original intention in setting up the dense networks was to test the 
representativeness of a single hailpad (1 ft2 or 0.09 m2) as a measure of the 
hailfall over a larger area ( 6  mi2 on the average for the 1973 network). In view 

I of this, it is reasonable to ask whether the pattern of Fig. 5 may be due to a 
few scarce, large hailstones randomly hitting some hailpads but not others. If 
this were an important effect, it would cast doubt on the representativeness and 
hence the usefulness of the hailpad. The distribution of golfball and larger hail- 
stones, whose contribution to the total impact energy ranges as high as 49% 
(at the two bottom right sites), might appear to suggest that the small-scale 
pattern is indeed a stochastic effect. Consequently, in order to investigate this 
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Fig. 5 Pattern of impact energy (J  m-?) for all hail sizes over the Northern Dense 

Network, DNX, on 16 August 1973. Values in parenthesis are the numbers of 
golfball and larger size hailstones per hailpad. 

problem further, the energy pattern for various ranges of the hailstone size 
spectrum was examined. 

Fig. 6 displays the energy pattern over DNX, excluding golfball and larger 
sizes, while Fig. 7 is the pattern without walnut or larger hailstones. In addition 
the patterns of both impact energy and hail mass over DNX on 16 August were 
inspected for all size ranges, including shot and pea sizes alone, grape size, and 
so on. These figures are not shown, but throughout this size spectrum the hailfall 
patterns were basically the same as those in Figs 5-7, with a minimum near the 
centre and maxima near the southeast, southwest, and northwest corners of 
the network. Inspection of the topographical features of DNX and of the winds 
during the storm show that exposure problems could not have been responsible 
for the pattern of Fig. 5 (Strong, 1974). It is reasonably certain then, that this 
pattern occurred throughout the hail size spectrum and is a result of the fine- 
scale structure of the hailstorm itself. 

Concerning the question of hailpad representativeness, we note that indivi- 

L 
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Fig. 6 Pattern of impact energy (J m-') over DNX on 16 August 1973 excluding the 
contribution to energy by sizes golfball, or larger. 

dual measurements of energy density over this one square mile varied by more, 
than a factor of two from the mean (879 J m-2). This suggests that the error 
in estimating the average energy density over a section of land with a single 
hailpad measurement can exceed 100% due to such fine-scale variations. 
Nevertheless, as we shall see in section 4, a network of one pad per square 
mile may provide quite accurate estimates of the average energy density for the 

I 
entire swath. 

23 August I973 ' The evening hailstorm of 23 August took a northward track, its major activity 
occurring to the west of both hailpad networks. However, it was of sufficient 
size and intensity to provide some hailpad data from both main networks and 
all five dense networks (Figs 8-1 1 ) . August 23 showed the most sporadic 
patterns of the 17 storms studied, but it is discussed here because of the wealth 
of data gathered, including some mobile hailpad samples obtained while pursu- 
ing the storm in a truck. 
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Fig. 7 Pattern of impact energy ( J  m-?) over DNX on 16 August 1973 excluding the 
contribution to energy by sizes walnut, or larger. 
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The main energy maximum in Fig. 8 lies north and west of the southern 
dense networks. The pattern of impact energy across the dense networks (DNK, 
DNY, DNZ, and DNW) in Fig. 9, does not exhibit the isolated regions of 
maximum and minimum energy that were noted over DNX on 16 August. 
Because these dense networks are only quarter sections and are spaced 1-3 mi 
apart, it may be that a small-scale pattern existed but was not resolved. How- 
ever, it may also be that small-scale fluctuations exist only in the vicinity of a 
major hailfall maximum. Sufficient cases were not obtained during the present 
study in order to definitely resolve this uncertainty. 

Fig. 10 shows the hailfall pattern over the Northern Network on 23 August. 
Again, the pattern appears to be a little patchy, but this may be due in part 
to a loss of about 20% of the hailpad data because the volunteers had been 
asked to cease operations on August 20.4 Nevertheless, it was fortunate that 
an energy maximum occurred just to the southwest of DNX. Over DNX (Fig. 
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4It is estimated that 20-25% of the data was lost due to cessation of operations after 
20 August. 
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Fig. 8 Pattern of impact energy (1 m-') over the Southern Network on 23 August 1973. 

Fig. 9 Pattern of impact energy (J  m-') over the Southern Dense Networks on 23 August 
1973. The triangles are regular network stations and the dots are dense network 
stations. The length of the side of each square is 0.5 mi. 

11 ), the pattern is opposite to that of 16 August, with a maximum where there 
previously had been a minimum, while the winds were from the same direction 
in both cases. This result supports the contention that these are real effects 
and are not due to exposure or other geographically determined factors. The 
main energy maximum is somewhat southwest of DNX (>200 J m-2) as the 
main network map suggests, but there is also a secondary peak (>I75 J m-2) 
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Fig. 10 Pattern of impact energy ( J  m-') over the Northern Network on 23 August 1973. 
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Fig. 1 1  Pattern of impact energy (J  m-2) over the Northern Dense Network, DNX, on 
23 August 1973. 
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23 August 1973. 

work, DNX, on 

in the centre of the land section. Again, the "wavelength" on this fine scale 
appears to be about 1 mi. 

4 Discussion 

Hailpad Dimensions and Network Design 
Although the 1973 networks were too small (24 mi wide by 36-55 mi long) 
to yield reliable data on hailswath lengths, the width of many of the swaths 
could be measured, as well as the longitudinal "wavelengths" of variations 
along a swath. For the particular storms considered, the width varied between 
5 and 20 mi (8 and 32 km) with a mean of 10 mi (16 km), and the "wave- 
length" from 10 to 15 mi (16 to 24 km) with a mean of 12 mi (19 km). These 
results have important implications for the design of future hail detection net- 
works in Alberta. Clearly, the average station spacing should be at most half 
the dominant scale of variation, i.e. 5 or  6 mi (8 or 10 km), simply in order 
to resolve the general hailfall pattern and to prevent aliasing. 

Damaging hail (with an energy exceeding 50 J m-2) occurred within paths 
3 mi wide on the average (for example, see Fig. 4 for 16 August). This in 
turn suggests that a hailpad spacing of less than 3 mi (5 km) is required to 
adequately resolve the damaging hail. Furthermore, the dense networks show 
that a spacing of at most 0.5 mi (0.8 km) would be required in order to 
distinguish certain fine-scale patterns. 

The effect of using hailpad spacings greater than 2.5 mi in 1973 was tested 
by systematically reducing the density of the data obtained from the storms 
discussed above by deleting some of the observations. This process revealed 
that the main large-scale patterns survived with 4-mi mean spacings, but that 
the patterns became unresolvable with mean spacings of 8 mi (1 3 km). There 
is another undesirable effect of changing the station density or of comparing 
data from networks of different densities. It was shown by deleting some of the 
hailpad observations that the mean values and the standard deviations of 
hailfall energy for a storm both change significantly when the network density 
is reduced. This problem will be considered in more detail in part 5. 

Causes of the Observed Hailfall Patterns 
No definitive explanation can be offered here for the two scales of hailfall 

r variation noted; that is, wavelengths of about twelve miles, and of about one 
mile. Still smaller scale variations probably do exist, but these are the principal 

1 

I ones that have been detected with the present networks. 
1 The formation of new convective cells on the right flank of existing thunder- 

storms which then propagate in a direction to the right of the cell motion 
(Newton and Katz, 195 8; Browning, 1964; Renick, 197 1 ; Chisholm and Eng- 
lish, 1973), provides a possible explanation for the large-scale pattern. Fig. 4, 
for example, shows an energy maximum east-northeast of the town of Rocky 
Mountain House, and the energy appears to taper off to the east. At this point, 
perhaps a new cell started to hail, continued northeastward and then gave rise 
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to the next energy maximum near DNX. Such an explanation is consistent with 
the concept of a "hailstreak" within the larger "hailswath," as defined by 
Changnon (1 970). 

The small-scale maxima of the dense networks probably result from the 
turbulent nature of such storms, each cell having more than one region of hail 
concentration. Morgan and Towery (1974, 1975) observed the same scale of 
hailfall variation occurring within a similar dense hailpad network in Nebraska 
in 1973. Changnon and Barron ( 1971 ) noted semi-circular areas of high crop 
loss (and hence high-impact energy density) ranging from 100 to 500 ft (30 to 
150 m) in diameter (not wavelength) which may be due to an even smaller scale 
of hailfall. Such small-scale variations are likely related to frequent reports, at 
least in Alberta, of more than one burst of hail (Morrow, 1976). Pel1 (1971) 
referred to these as "point hailfalls." Barge (personal communication) has 
identified small-scale radar echo features that are associated with growing 
cloud towers in the storm mass, and have a typical scale of a few kilometres. 
Similar small-scale patterns have been referred to by others as "hailcores" 
(Admirat, 1972). 

5 Measurement errors as a function of network density 
The question of what network density is required in order to adequately 
measure hailfall energies is one with particular significance for the evaluation 
of hail suppression experiments. The answer must clearly depend on what 
is meant by "adequate." If, for instance, it is desired to compare hailfall pat- 
terns on the ground with radar echoes aloft, the spatial resolution of the 
hailpad network should be commensurate with that of the radar. We have 
shown, for instance, that with a mean network spacing of half the wavelength 
of significant variations in the hailfall pattern or greater, these variations 
cease to be resolved. This is not surprising in view of the aliasing effect, 
which results in wavelengths shorter than twice the network spacing being 
"folded" into wavelengths longer than twice the network spacing. 

If, on the other hand, one wishes to obtain an accurate estimate of the mean 
areal energy density of the swath, the required network density can be specified 
in terms of the inaccuracy that one is prepared to tolerate. Questions of this 
nature have been examined empirically by Huff ( 197 1 ) and by Herndon et al. 
(1973) using dense networks of rain gauges. Further empirical results were 
obtained by Morgan and Towery (1975), who looked at measurements of 
crop damage by hail and by Changnon (1968) who examined how the esti- 
mated areal extent of damaging hail varied with the measurement network 
density. In all of these papers the authors assumed the true rainfall or crop 
damage distributions to be given by measurements made with a high-density 
network. They then performed Monte Carlo experiments to assess possible 
errors with other network densities. The disadvantages of this method are that 
Monte Carlo experiments are tedious and costly and they cannot provide error 
estimates for network densities greater than those actually used. The method 
to be described here begins in much the same way by using a high-density net- 
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Fig. 12 Cumulative distribution function of energy densities measured over the Northern 
Network on 16 August 1973, along with the best-fitting gamma distribution. 

work to estimate the distribution of hail energy densities. However, we avoid 
the need for Monte Carlo experiments through the use of elementary prob- 
ability theory. In so doing, we provide a theoretical basis for the previous 
empirical work, and a framework for extending the range of its applicability. 
This approach has been employed with a different objective by Simpson et al. 
(1973). The basic concept is also to be found in the work of Marshall and 
Hitschfeld (1953). 

In order to begin the analysis, one needs to know the true distribution of 
areal energy densities in a particular hailswath. This can only be determined 
by making measurements at all points within the swath. Lacking this informa- 
tion, we turn to the best estimate available, namely the distribution of hail 
energies measured by the present hailpad network. We will take the hailswath 

1 
of 16 August 1973 as an example, in order to demonstrate the approach used. 
Although the entire swath does not lie within the network, it will suffice for 
an illustration. The cumulative distribution function of the measured energy 

I densities is shown as the jagged curve in Fig. 12. Also shown is the best-fitting 
I gamma distribution, whose parameters were obtained using the method de- 

scribed by Panofsky and Brier (1963). We will assume henceforth that the 
true distribution function for the energy densities from this swath is the gamma 
distribution and that the measured distribution is an approximation to it. It 
is not necessary in what follows, to assume a gamma distribution. Any distribu- 
tion that provides a good fit to the observed distribution, and for which the 
distribution of sample means is theoretically determinable, may be used. 
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The gamma distribution: 

has the property that the means of random samples of size k are also gamma 
distributed according to @ (x,ka,p/k). 

For the 16 August example, the parameters of the best-fitting gamma dis- 
tribution are & = 0.5219 and 6 = 412.5 J m-2, giving a mean F = 66 = 215.3 
J m-2 and standard deviation a = = 298.0 J m-2. (The mean and standard 
deviation of the 66 observations from the regular hailpad network, not includ- 
ing the dense network, are 215.3 J m-2 and 316.5 J m-2, respectively.) The 
mean and standard deviation of the distribution of means for samples of size k 
is then p and a/Jk. The central limit theorem requires that as k+ w ,  @(x,ka,p/k) 
must approach a normal distribution function whose mean and standard devia- 
tion are also given by p and a/&. 

Using these results, the probability that the mean of a random sample of 
size k be less than a certain multipleof the true mean, (p ,  say, is just @(<p,ka,p/k). 
Alternately, p %  of the means of all random samples of size k will lie below 
[p if: 

Given p, this equation can be solved for [, using tables of the incomplete gamma 
function (Pearson, 195 1 ) . The results of such calculations for the 16 August 
case, are illustrated in Fig. 13. Since the measured swath area is approximately 
410 mi2, the x-axis scale can be readily transformed from k to station density, 
for this case. 

For random samples of size 10, that is, ten hailpads within the swath, the 
graph shows that 95% of the estimates of mean energy density will lie between 
0.36p and 2.03p, 80% will lie in the range 0.51p to 1.58p, and 50% will lie 
between 0.68p and 1.25p. In order to test these predictions a Monte Carlo 
experiment was performed in which random samples of size 10 were selected 
(with replacement) from the 66 hailpad observations. The distribution of 
the resulting means is indicated by the black squares in Fig. 13. The comparison 
with the theoretical distribution is good, except near the tail. The discrepancy 
here can probably be ascribed to the small number of samples used to determine 
the distribution of the means (only 100). The dots at k = 90 are given by a 
normal distribution, illustrating the approximate validity of the central limit 
theorem in this case even when k is not very great. 

Fortunately, samples obtained using an approximately uniformly spaced 
array of hailpads are not strictly random because there is a certain minimum 
distance between pads. The spatial dispersion of the hailpad samples will 
reduce the probability of extreme (i.e. very high or very low) mean values, 
below that to be expected with completely random samples. Consequently, the 
error estimates in Fig. 13 must be regarded only as an upper bound. This upper 
bound will be approached in practice if ( a )  the distribution of hailpads within 
the swath is not uniform or (b)  the mean spacing of the hailpads is very much 
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of the 16 August 1973 hailswath. The estimated mean is presented as a multiple 
of the true mean energy density. 

larger than the scale of significant spatial variations within the swath. 
A further question that may arise is what will be the effect on Fig. 13 of the 

errors in estimating the true distribution with only 66 pad observations? In a 
sense this question is irrelevant, since we can postulate that a gamma distribu- 
tion with the given mean and standard deviation is the true distribution function 
for some hailswaths (not necessarily the 16 August one). The fact that the 
energy distribution from the observed hailswath on 16 August closely fits the 
assumed gamma distribution, lends some credence to this contention. 

1 

5 Conclusions 

I 
The 1973 hailpad analysis of 17 storms showed that hailfall patterns are not 

I as sporadic or patchy as many have believed. Part of the 23 August pattern 
k 

might be termed sporadic, but more than one hailswath was suspected in this 
case. 

Hailpad networks are a viable measurement tool in Alberta, but one must 
be aware of the limits that a particular network design places on the analysis 
of any results. This work has provided a means for determining such limits for 
hailfall. 

An approximate relation between impact energy and crop damage has been 
found. Furthermore the hailpad provides its best measurements of hailfall 
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over the range of most significant crop damage (impact energies of 50 to 450 
J m-2). Crop damage estimates are dependent on crop type, soil type, time in 
the growing season, and so on, and hence they are less reliable than hailpads as 
a measure of hailfall unless all the relevant agricultural variables can also be 
measured and taken into account. 

Although careful hand analysis of hailpads is a tedious operation, it can be 
done objectively (Strong, 1974), yielding large amounts of data cheaply. The 
hailpads of this study cost about $0.25 each, while the analysis cost was about 
$1 per pad. The latter cost could likely be reduced further by means of an 
automated analysis technique. 
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List of Symbols 
Cn - drag coefficient for a spherical hailstone 

P - average hailstone density 
pa - air density 
W T  - terminal velocity 
g - acceleration of gravity 
DH - diameter of spherical hailstone 
m - mass of hailstone 
Dn - diameter of hailpad dent 
N - number of hailstones 
e~ - vertical partition of impact energy of a hailstone 
e~ - horizontal partition of impact energy 
 IT - total impact energy (horizontal plus vertical) 
W H  - wind speed 
@(XI - gamma distribution functions 
a# - parameters of the gamma distribution 
r(a> - complete gamma function 
k - sample size 
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NOTES AND CORRESPONDENCE 

GLOBAL FLOW-VISUALIZATION 

OR 

"THEODORE VON KARMAN WINS AGAIN!" 

H.W. Teunissen 
Atmospheric Environment Service, 4905 Dufferin St, 

Downsview, Ontario M3H 5T4 

[Original manuscript received 18 November 1976; in revised form 17 January 19771 

In 19 1 1-1 2, the brilliant scientist-experimentalist-analyst Theodore von 
KArm6n ( 188 1-1963 ) developed his now-famous theory of the "vortex street" 
(Goldstein, 1938; Schlichting, 1968) in which a circularly cylindrical body, 
when exposed to a fluid flowing perpendicular to its length, alternately sheds 
vortices from opposite sides of it. This phenomenon is familiar to many of us as 
the cause of the "humming" of telephone or power lines in high winds, a sound 
which is usually referred to as "Aeolian tones." It is extremely important in 
that it can have very destructive effects on stacks and chimneys and the like 
and also, to a lesser extent, on suspended cables. 

Since von KBrman's original work, considerable research has been conducted 
into the theoretical and experimental aspects of vortex shedding from cylinders 
(e.g. Roshko, 1954a, 1954b, and 1961; Schlichting, 1968; Wooton and 
Scruton, 1971 ). Although the phenomenon is still not perfectly understood, 
many interesting results have been obtained. For example, it was originally 
thought that organized vortex shedding occurs over only a very limited range 
of Reynolds number (Re = pVD/p; see Fig. 2 for definition of symbols). 
Laboratory results have shown, however, that it exists to a Reynolds number 
of at least lo7 (Roshko, 1961), and there is no reason to believe that this value 
is an upper limit. It is virtually impossible to produce higher values of Re in the 
laboratory, however, so results in this range have remained largely unavailable. 
Another result has been the determination of the frequency with which the 
vortices are shed from the body. This frequency is usually expressed in terms of 
a Strouhal number, which is defined by St = fD/V. The Strouhal shedding 
frequency appears to be about 0.27 for circular cylinders at high Re, decreasing 
to about 0.20 for lower values of Re  and 0.10-0.25 for non-circular cross- 
sections. 

The purpose of this brief note is to focus attention on the photograph of 
Fig. 1 in light of von Karmbn's original two-dimensional vortex shedding theory 
and some of the more recently observed aspects of the phenomenon. The 
photograph displays a splendid example of the natural occurrence of a form 
of vortex shedding on a Reynolds number scale (Re - 10l0) far greater than 
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Fig. I Photograph of the !lorn uf ail- p;lrt iyla de Gusdnlupe ( M e x . )  OR the coast of Hajit 
California, obtaineil at !he Atmospheric Environment Service un 25  h u g .  1976 
(NOAA 5, Orbit #334) .  Mist and clouds provide the medium needed to make the 
Row slructure visible. 

can bc achieved in typical laboratory experiments. It was obtained in the Atmo- 
spheric Environment Service Satellite Data Laboratory and shows the flow of 
air past Isla de  Guadalupe off the coast of Baja California. While such photo- 
graphs have become fairly familiar in recent years (e.g. Bayliss, 1976) ,  they 
remain a pleasing reminder of the existence of the phenomenon on a global 
scale and of the Row-visualization capabilitics that are provided by satellite 
photography. 

We can examine some of the relevant parameters of the prescnt flow by 
using dimensional information from the photograph and wind data from the 
island for this date. The flow is reconstructed in Fig. 2 and appropriate values 
are  given. Using these data, we obtain a Reynolds number of 5.2 X 10" and 
a Strouhal number of  0.15. The latter value certainly agrees favourably with 
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ADVANCES IN GEOPHYSIC 

ademic Press, 1976,3 12 

Fig. 2 Reconstruction \ 
\ 

of the flow structure. D -- 10 km; 
L - 35 km; h - 20 km; A - 65 km; 
wind speed V -- 7.5 m s-'; vortex shedding 
frequency f = V/X; p = air density; p = air viscosity. / /  

those quoted above, especially when it is kept in mind that this full-scale case 
represents a three-dimensional flow over a mountain that is 1300 m high, as 
opposed to a controlled two-dimensional flow past a cylinder! 

Finally, it is interesting to calculate the value of h / ~  for this flow (see Fig. 2) .  
In his original theory, von Kirmin concluded that the vortex street would 
remain stable only if this ratio were equal to 0.28. From the photograph, we 
obtain a value of h/h. -- 0.3! 

You win again, Dr von Kirman! 
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BOOK REVIEWS 

ADVANCES IN GEOPH YSICS, volume 19. H.E. Landsberg and J. van Meighem, editors. Ac· 
ademic Press, 1976,312 pp., hardcover, $29.00. 

This volume in the se ries Advances in Geophysics consists of three articles: 
"Precipi tation augmentation from cumul us clouds and systems: scientific and techno­
logical founda tions, 1975," by Joan ne Simpson; 
"The propert ies of atmospheric ae rosol particles as functions of the relative humidity at 
thermody namic equilibrium with the surrounding moist a ir," by Gottfried Hanel ; and 
"A three-dimensional model for the numerical simulation of estuaries," by Erique A. 
Caponi. 

Only the first two contributions are reviewed here. 

Simpson's article is divided into two main chapters the first of which deals with the 
sc ientific basis, and the second with the technological basis for the modi fication of cumulus 
clouds. The au thor has tended to present a broad overview of cloud physics rather than to 
focus on the important advances and gaps in the basis of cumulus precipitation augmenta· 
tion. Although the titl e is very spec ific, the article is in fact very general. This is particularly 
so in the first part of the chapter on the scientific basis which deals with microphysics. In 
less than six pages the whole gamut of cloud microphysics is briefly discussed, starting with 
cloud condensation nuclei and ending with cloud electrification. Needless to say, none of 
the almost one·dozen topics is treated in detail , and yet neither are most of them related 
in the article to precipitation augmentation theories. J believe the article would have been 
much more useful if greater emphasis had been placed on the specific rel ationships of 
cloud physics to cumulus modification. The section on microphysics does single out some 
aspects for special attention, such as the bimodality of some cloud droplet spectra and the 
often observed ice crystal·nucleus concentration discrepancy, and the related experiments 
on splinter production by riming. The next sect ion on cumulus dynamics and modelling 
contains a good description of the historical development of one-dimensional models, as 
well as their successes and failings. The role of these models in the design and evaluation 
of dynamic seeding experiments in F lorida is, naturally, particularly well documented. The 
severe limitat ions of one-dimensional models are recognized and mention is made, together 
with a healthy note of cau tion, of some of the advances in the formulation of two- and 
three·dimensional models. The chapter closes with an interesting discussion of various 
aspects of cloud interact ions, downwind effects, and interactions with the boundary layer. 

The chapter on the assessment of the technological basis for cumulus modification 
begins with a critical overview of the various silver iodide delive ry systems. It is here that 
the author points out that, among other gaps in our knowledge, neither the optimum 
amount nor the optimum location of the seeding agent is known. These are hardly tech­
nological problems and should have been discussed in the previous chapter. Brief mention 
is made of tracers, trace detection techniques, organic nucleants, and warm cloud modifi ca­
tion. This section is followed by one on measuring systems, in which the instrumentation 
required to measure precipitation and to monitor the microphysical and dynamical changes 
in the cloud are reviewed. The fin al section discusses the role of statistics on the design 
and analys is of seeding experiments. 

This article assimila tes a great deal of informat ion from many different sources into a 
form convenient as a starting point for further investigation into specific aspects of cumulus 
modification. Its long li st of references will be particularly usefuL Nevertheless, I feel that 
this was an opportunity missed. Professor Simpson has had extensive involvement with 
cloud-seeding experiments, and is in a particularly advantageous position to point out the 
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predominant foundations of current cumulus modification experiments and programs, and 
the important gaps in these foundations. Consequently a more selective and detailed ap­
proach to the topic would have been even more valuable. 

Hanel has written a very impressive treatise on the .properties of atmospheric aerosols 
as functions of relative humidity. He first develops equations relating the mass, density and 
complex refractive index of single aerosol particles to relative humidity, and then modifies 
these equations to describe the functional dependence on relative humidity of these prop­
erties for aerosol samples. The author then lists the measurements required to calculate the 
above properties from the theory as well as the required accuracy of the measurements. The 
article continues with brief descriptions, and discussions of the principles of the sophis­
ticated apparatus built by Hanel to carry out the measurements to the necessa ry accuracy. 

Measurements of the properties of six different aerosol samples are reported, followed 
by application of the theory to deduce the humidity dependence of the mean equivalent 
radius, mean density, and mean refractive index, as well as geometric cross-sections, ex­
tinction and absorption coefficients for radiation at a number of wavelengths between 0.3 
and 12 p.m. Finally as examples of applications of the results the author discusses the 
estimate of visible range, the ratio of extinction coefficient to aerosol mass, and the single 
scattering albedo - all as functions of humidity. 

The presentation of theory and data allowing for the first time the reliable calculation 
of the humidity dependence of many of the properties of aerosols is an important achieve­
ment. The continu ity of the material, including theory, measurements, and application of 
the theory allows increased appreciation of each aspect of the work. The development of 
the theory is presented clearly, as is its application. The numerous results are in useful 
tabular form. In the opinion of this reviewer this article will be of considerable interest and 
value to most of those concerned with the properties of atmospheric aerosols. 

ANNOUNCEMENTS 

GATE Data Available 

H.G. Leighton 
McGill University 
Montreal 

During the GARP Atlantic Tropical Experiment, GATE, a large amount of meteorological 
and oceanographical data was collected. These data have now been processed and validated 
and are available to users at nominal cost. The types of Canadian data available are: 

Hourly surface meteorological observations. 
2 Upper air data of winds, temperatu res and humidity. 
3 Hourly and ten-minute values of surface radiation components. 
4 Tethered balloon boundary layer measurements to t km. 
5 Precipitation data including digital radar data. 
6 Wind profiles from surface boom. 
7 CTD, XBT, current meter and thermistor chain oceanographic data. 

Validated data from all nations participating in GATE are also available. Interested 
scientists are encouraged to take advantage of this valuable data set. 

For further information please contact either The National Processing Centre or Dr 
R.I. Polavarapu at Atmospheric Environment Service, 4905 Dufferin Street, Downsview, 
Ontario M3H ST4. 
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