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ABSTRACT 

A review of the surface and subsurface 
circulation of the North and South 
Pacific Oceans is presented together 
with a brief review of the structures 
of physical oceanographic properties 
of the North Pacific Ocean. 

Our knowledge of the distribution 
of surface currents and sea sur- 
face temperatures is more complete 
than that of other properties. Princi- 
pally this is because of the greater 
amount of available data which has 
been collected by the merchant and 
naval ships of the world's maritime 
nations, emphasizing the contributions 
they have made to oceanography. 
Despite this information, however, 
present knowledge about major sur- 
face currents is limited to their mean 
velocities, except for the Kuroshio and 
some of the equatorial currents about 

which we have some vague notions as 
to their variability. The intermediate 
water of the Pacific Ocean as a whole 
has been studied in detail only once. 
Our knowledge of the oceanic heat 
transport is also very limited. The flow 
in a meridional section in the vertical 
plane will require special study as it 
may have important bearing on the 
heat transported by the ocean cur- 
rents. Although volume transport for 
the major ocean currents has been 
estimated, the estimates are so few 
and the methods used to determine the 
transport so inconsistent that it is dif- 
ficult to make a meaningful compari- 
son of the transport values. Estimates 
that vary by a factor of two are com- 
mon; some vary by an order of magni- 
tude. 

1 Introduction 
Having rashly accepted the invitation to speak on this general subject, I thought 
about the North Pacific Oceanography and how it might d e c t  the North 
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American continental climate. It did not take me too long to realize what I had 
talked myself into. Those of us living in the western coastal area are aware of 
the influence of the ocean on our climate; the oceanic waters modify the coastal 
land temperatures and are responsible for the precipitation that occurs regularly. 
However, there are other large-scale ocean events away from our local area that 
appear to be more important in affecting the continental climate. Such events 
may occur in areas far removed from us. Before preparing this talk, I was 
familiar with the oceanography of the North Pacific Ocean, but knew little 
about that of the equatorial belt or of the South Pacific Ocean. Yet these regions 
appear to be just as important, or even more important, to the North American 
climate than the oceanic regions closest to us. Furthermore, when one considers 
the atmosphere-ocean interaction of the eastern equatorial belt it is likely that 
the corresponding belt on the western side of the Atlantic Ocean needs to be 
considered. For this reason, I felt rather uneasy about giving my presentation. 

Nevertheless, it is perhaps worthwhile to review the present state of knowl- 
edge concerning the circulation and structure of the ocean properties of the 
North and South Pacific Oceans, including the equatorial region, so that we 
can get an overview of our knowledge, if only to point out its deficiencies. By 
doing so, we can make the best use of our present knowledge as a basis to plan 
the next stage of investigations needed to understand the behaviour of the 
ocean and the complex large-scale atmosphere-ocean interaction. 

I shall discuss mainly the surface and subsurface circulation of the North 
and South Pacific Oceans and shall add some statements regarding the structure 
of ocean properties of the North Pacific Ocean, and finally mention a few 
examples of the probable impact of the ocean on the climate. 

2 The atmospheric circulation of the North and South Pacific Oceans 
In view of the importance oceanographers place on the wind field, I shall first 
describe briefly the atmospheric circulation over the Pacific Ocean. 

a Northern Winter 
The main feature of the atmosphere over the North Pacific Ocean during the 
northern winter is the presence of a well-defined low-pressure system (Aleutian 
Low) along the Aleutian Islands and the less well-defined high-pressure system 
(Pacific High) centred approximately 1500 kilometres (km) west of the Cali- 
fornia Peninsula (Fig. l a ) .  A very well-developed high-pressure system 
(Siberian High) with pressures exceeding 1032 mb also occurs several thou- 
sand kilometres to the west of the Aleutian Low. Due to the presence of such 
a combination of atmospheric systems the winds over the North Pacific are 
from the north on the western side and from the south along the eastern side. 
In the interior of the North Pacific between the Aleutian Islands and the 
Hawaiian Islands near-zonal westerly winds are present. South of California 
the anti-cyclonic winds of the Pacific High join the North East Trade Winds 
where because of the occurrence of a belt of relatively weak high-pressure 
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Fig. 1 Distribution of sea level atmospheric pressure (millibars) over the Pacific Ocean. 
(a) Northern Winter 
(b)  Northern Summer 
Pressure distribution over the North Pacific Ocean north of latitude 1S0N are 
based on 22-year mean pressures (1950-71) obtained from unpublished data of 
the U.S. Navy Fleet Numerical Weather Center; distribution over the South 
Pacific Ocean, south of latitude 50"s is adapted from Taljaard et al., 1969; the 
rest are adapted from Pilot Charts (US.  Defence Mapping Agency Hydrographic 
Center, 1966; 1974). 

between Latitude 20' and 30°N, the Trade Winds persist across the ocean 
(Mintz and Dean, 1952). 

The South Pacific Ocean, on the other hand, is almost completely dominated 
by the presence of a well-developed high-pressure system (South Pacific High) 
centred approximately 3,000 km to the west of the coast of Peru. There is a 
relatively weak low-pressure area over northern Australia which joins the 
ocean-wide belt of low pressure along the Equator. An intense low-pressure 
area with pressures lower than 990 mb occurs over the northern part of the 
continent of Antarctica. To the south of Latitude 40°S, therefore, strong 
westerly winds are evident. Along the west coast of South America, winds are 
from the south, joining the Southeast Trade Winds as they approach the 
Equator. Moreover, there is some evidence that these Southeast Trade Winds 
cross the Equator, the Inter-Tropical Convergence Zone being situated at 
about 2ON at Longitude 120°W (Crowe, 1952). 

Along the western side of the equatorial belt the winds from the Northern 
Hemisphere cross the Equator and because of the presence of a low-pressure 
area here, westerly winds are encountered in the region of northern Australia. 

b Northern Summer 
The most conspicuous aspect of the atmosphere over the North Pacific Ocean 
during the northern summer is the presence of a well-developed high pressure 
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system, the North Pacific High, centred approximately 2500 km west of the 
coast of California (Fig. 1 b) . It lies more than 1500 km to the north-west of 
the location occupied during the winter. There is also a relatively weak low- 
pressure area over the eastern part of Asia which extends into Bering Sea. As 
a consequence of these pressure systems, winds along the western side of the 
North Pacific are directed to the north while those along the eastern side are 
directed to the south, with a general eastward wind occurring to the north of 
Latitude 30°N in the central part and westward winds occurring south of it. 
Owing to the presence of the Pacific High, the northerly winds join the North- 
east Trade Winds. However, because the Pacific High is displaced farther to 
the north than during the winter, the Northeast Trade Winds are weaker than 
during the winter. As the winds approach the western side they veer and blow 

I 

northward. 
In the South Pacific Ocean the marked high-pressure system over the eastern 

side of the ocean is again as evident as during the northern winter. A less-intense 
high pressure system also occurs along the western side over Australia so that I 
all along the latitude between Latitude 25" and 35"s a ridge of high pressure 
exists. Between the two high pressure systems of the North and South Pacific 
Oceans lies a belt of low pressure that extends across the ocean along the 
equatorial belt from New Guinea to Central America. As was the case in the 
winter, a marked low-pressure system is further evident over the continent of 
Antarctica. This latter system, combined with the ridge of high pressure at 
mid-latitudes, produces strong persistent westerly winds across a broad belt 
south of 40"s. There is evidence that these winds are somewhat weaker +ring 
this time than in the northern winter (Mintz and Dean, 1952; Hellerman, 1967, 
1968). Due presumably to the weakening of the Northeast Trade Winds in the 
summer, the Southeast Trade Winds cross the Equator and the Inter-Tropical 
Convergence Zone is shifted about 1000 km to the north of its winter location 
(Crowe, 1952). Winds along the western side of the belt are from the south 
during this season in contrast to being from the north during the winter. 

3 Circulation of the surface waters of the Pacific Ocean 
Our descriptive knowledge of the general circulation of the surface waters of 
most parts of the ocean is based largely upon the current velocity data obtained 
by merchant and naval ships of the maritime nations. The distribution of surface 
currents obtained from them are distributed as Pilot Charts mainly for the 
use of mariners. One of the earliest charts depicting the surface currents of 
the Pacific Ocean was compiled by Findlay ( 1853) who showed the presence 
of the following currents : 

The Japanese Current: Depicted as a broad surface flow setting eastward 
between 35" and 50°N; this current is now separated into the Kuroshio near 
the Japanese Islands, Subarctic and North Pacific Currents in the central part, 
and the California Current off the coast of North America. The Alaska Current 
is not evident, but Findlay indicates a northward coastal current off the Queen 
Charlotte lslands which continues along the Alaskan coast to Longitude 
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160°W. Part of the California Current is shown to continue along the coast 
of Mexico as far south as Latitude 10°S. The other part of the current is shown 
to feed into the westward-flowing North Equatorial Current which eventually 
turns poleward to join the Kuroshio. 

The North Equatorial Countercurrent: Named by Findlay (1853), this is 
a very well placed, eastward current situated between 5' and 10°N. 

The Antarctic Current: This is shown as a very broad, poorly-defined current 
setting northeastward. It differs from our present view of the current system of 
the South Pacific in that the set is presently considered to be to the east. More- 
over, the South Pacific Current and the Antarctic Circumpolar Current now 
comprise the current Findlay called the Antarctic Current. 

The Cape Horn Current: is correctly placed; so is the Peru Current (called 
Peruvian or Humboldt's Current at that time). 

The South Equatorial Current: This is shown as a broad westward flow 
lying between Latitude 5ON and 25"s; until 1959 when the South Equatorial 
Countercurrent was discovered it was still considered to be as depicted by 
Findlay. 

The Australian Current: Now called the East Australian Current, it is shown 
to originate to the south of New Caledonia. A northward-flowing current is 
shown along the west coast of New Zealand. 

Considering that the chart was made from ships' reports from scattered 
observations a century and a quarter ago, it is remarkable that the major 
features of the circulation are present and with the exception of the details in 
the region north of 40°N and south of 40°S, they are in accord with our 
present notions of the circulation of the Pacific Ocean. Schott ( 1942) compiled 
a much improved chart based not only on ships' reports but also on obser- 
vations taken by oceanographers. In fact, the Pilot Charts now available are 
not much better than those prepared by Schott. Distributions of surface cur- 
rents derived from the more recent U.S. Pilot Charts for the Pacific Ocean are 
shown in Fig. 2 (U.S. Defence Mapping Agency Hydrographic Centre, 1966, 
1974.) 

a Northern Winter 
A comparison of the winter ocean circulation (Fig. 2a) with the corresponding 
atmospheric circulation (Fig. l a )  (surface winds are assumed to be directed 
at 15O to the left of the downwind direction of the geostrophic wind vector in 
the Northern Hemisphere and to the right in the Southern Hemisphere) shows 
general similarity between the two, except that the former tends to deviate 
somewhat to the right of the direction of the wind in the Northern Hemisphere 
and to the left in the Southern Hemisphere, no doubt due to the Coriolis effect. 
On the other hand, the southward-flowing East Kamchatka Current and the 
Oyashio in the Western North Pacific (Fig. 3) appear to strengthen during 
the winter (Hata, 1965; Arsen'ev, 1967; Hughes et al., 1974) apparently in 
response to the increase in the northerly winds that occur during this period. 
However, there are major differences between the two: along the western side 
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Fig. 2 Distribution of surface currents of the Pacific Ocean 
(a) Northern Winter 
(b) Northern Summer 
Adapted from Pilot Charts (U.S. Defence Mapping Agency Hydrographic Center, 
1966; 1974). 

of the ocean are the intensified poleward-flowing western boundary currents 
such as the Kuroshio in the North Pacific and the East Australian Current in 
the South Pacific (Fig. 3). The Kuroshio, in particular, flows almost unim- 
peded in the opposite direction to that of the prevailing winds, although its 
speed has been noted to decrease slightly during the last quarter of the year 
(Taft, 1972). Along the eastern side of the North Pacific the southward- 
flowing branch of the Subarctic Current, the California current, flows contrary 
to the direction of the southerly winter winds. However, the seasonal north- 
ward-flowing Davidson Current (not shown), which is generally directly 
attributable to these winds also occurs along the west coast of North America 
coastward of the California Current. Similarly, the south-eastward-flowing 
New Guinea Current occurs only during the winter when persistent northerly 
winds prevail. Though not shown in the U.S. Pilot Charts there is a westward- 
flowing Antarctic Current during the winter which appears in charts published 
by others (for example, Schott, 1942). 

It is mostly in the tropical and equatorial zones that the atmospheric and 
oceanic circulation show marked departure. Although the Equatorial Current 
along the Equator as well as both the North and South Equatorial Currents 
flow westward in the same general direction as the Northeast and Southeast 
Trade Winds there are, in, this oceanic region, two narrow countercurrents 
symmetrical to the Equator, the North and South Equatorial Countercurrents 
(Fig. 3), which flow eastward against the wind. At, and very near, the Equator 
a strong jet-like eastward-flowing Equatorial Undercurrent (Fig. 3) is also 
present. The Equatorial Undercurrent (Cromwell et al., 1954) and the South 
Equatorial Countercurrent (Reid, 1959) have only been discovered during 
the past two and a half decades. The South Equatorial Countercurrent, in fact, 
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Fig. 3 Nomenclature of Currents of the Pacific Ocean during Northern Summer. During 
Northern Winter a narrow poleward-flowing Davidson Current occurs along the 
Pacific coast of the United States; the southeastward-flowing New Guinea Current 
occurs along the northern side of New Guinea during the winter. 

is not evident in the Pilot Charts published by the U.S. authorities, but is shown 
to occur in the western part of the South Pacific in comparable charts published 
by authorities in the United Kingdom (Air Ministry, 1939) and the Nether- 
lands (Koninklijk Nederlands Meteorologisch Institut, 1949, as quoted by 
Reid, 1959). A more detailed discussion of the equatorial currents will be given 
subsequent to consideration of the geostrophic currents and volume transports. 

b Northern Summer 
The distribution of surface currents for the northern summer is shown in Fig. 
2b. A comparison of this with the wind field of Fig. l b  again shows general 
similarity. But it is the similarity between the oceanic circulation patterns in 
winter and summer that is more conspicuous, although where the wind velocity 
changes markedly with season, this correspondence is evident in some regions. 
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Along the eastern side of the North Pacific the seasonal current pattern is 
basically unchanged except that along the coast of the United States the pole- 
ward-flowing, coastal Davidson Current is absent during the summer. Near 
the western end of the Equator, the southward-flowing Mindanao Current runs 
against the northward-blowing Southeast Trade Winds that cross the Equator 
and with the reversal of winds in the western Equatorial Pacific, from northerly 
to southerly, the New Guinea Current disappears. Moreover, the East Aus- 
tralian Current weakens during the northern summer (Hamon, 1965) due 
probably to this reversal of the equatorial winds. The westward-flowing Antarc- 
tic Current that occurs during the northern winter appears also to be present 
during the northern summer (Schott, 1942), but seems to be weaker than 
during the northern winter. 

Apart from these differences, the major features of the distribution of surface 
currents during the summer are very similar to those during the winter. 

As was mentioned earlier, the distribution of surface currents as portrayed 
in the various Pilot Charts are based on ships' reports. The surface current 
velocities indicated in these reports are derived from dead-reckoning methods 
in which the course (direction) and distance travelled in a time interval 
(course-made-good) is compared to where the ship should have travelled 
during that interval. The main disadvantage of this method is the uncertainty 
of the results arising from probable failure to account for wind effects on the 
ship. The other drawback of the method is the uneven spatial coverage due to 
the existence of established ship routes which only span certain limited areas 
of the ocean. 

c Nomenclature of Currents in the Pacific Ocean 
In the previous section, reference was made to the names of some of the major 
currents of the Pacific Ocean. It will be useful, at this stage, however, to famil- 
iarize ourselves with the names of the other currents as some of these names 
will frequently turn up during the subsequent discussions. Fig. 3 shows the 
names of these currents and their geographical locations. Since the winter 
currents generally occur at the same location as the summer currents, it is not 
necessary to show them separately. The following two winter currents are not 
shown in the Figure: the Davidson Current, a narrow poleward-flowering cur- 
rent located between the west coast of the United States and the southward-flow- 
ing California Current; the New Guinea Current, a southeastward-flowing 
current that occurs along the northern coast of New Guinea. In addition, the 
westward-flowing Antarctic Current off the northern coast of the continent of 
Antarctica, though absent in the U.S. Pilot Charts, has been included in Figure 3. 

This essentially completes the list of names that I have come across in the 
oceanographic literature. Where two or more names occurred for the same 
current, I have adopted those generally used by North Americans. 

Most current atlases of the North Pacific indicate the zonal eastward flow 
to be composed of the northernmost Subarctic (or Aleutian) Current, the West 
Wind Drift, and the southernmost North Pacific Current. Actually, there is, as 
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yet, no truly valid way of distinguishing between the West Wind Drift and the 
Subarctic Current so we shall simply combine them into the Subarctic Current. 
Ever since the discovery of the Equatorial Undercurrent in 1952 and the South 
Equatorial Countercurrent in 1959, the naming or renaming of currents in 
the Equatorial Current System has not been universally agreed upon. In the 
past the South Equatorial Current comprised the broad westward flow occurring 
between the latitudes of 5ON to 20°S. Perhaps it will be reasonable to split this 
current and simply call the westward flow along the Equator the Equatorial 
Current, as Burkov (1966), Hisard et al. (1970), and Rotschi (1973) have 
already done. This leaves the westward-flowing current to the south of the 
South Equatorial Countercurrent unnamed. We shall call this the South Equa- 
torial Current which then tidies up the nomenclature in the Equatorial region 
by its symmetry about the Equator. 

Of the undercurrents, the strong, eastward ocean-wide Equatorial Under- 
current is the most prominent one. Two other undercurrents, the northward- 
flowing California Undercurrent in the North Pacific and the southward-flowing 
Peru-Chile Undercurrent, are present along the east side of the Pacific. How- 
ever, these currents are generally of narrow breadth and occur at depths of 
only a few hundred metres. 

Recent studies have also suggested the occurrence of narrow eastward- 
flowing countercurrents at latitudes of 20'-30' within the western part of the 
Pacific Ocean in both hemispheres (Yoshida and Kidokoro, 1967b). These 
are tentatively called the Subtropical Countercurrents. 

There is no doubt as to the existence of the Equatorial Undercurrent but 
confirmation of the existence of the South Equatorial Countercurrent, the 
Subtropical Countercurrent and the South Equatorial Current (which has been 
separated from the Equatorial Current) awaits further study. 

4 Surface geostrophic currents 
Much of our knowledge about ocean circulation has been gained from the 
consideration of geostrophic currents. These are usually calculated relative to 
1000 m depth or to the 1000 decibar level (about 990 m) since most of the 
oceanographic observations made in the past have not sampled beyond the 
depth of 1000 m. Where the baroclinic structure at levels greater than 1000 
decibars is absent, the geostrophic current velocities obtained relative to the 
1000 decibar surface would be acceptable. However, where structure exists, 
the assumption of no motion at the 1000 decibar surface may give misleading 
results. In areas of the western boundary currents and in high latitude regions, 
especially in the region of the Antarctic Circumpolar Current belt, significant 
structure does occur (Reed, 1970a) and as a result, surface currents based 
on the 1000 decibar surface may not provide accurate representation of the 
circulation. 

The geostrophic currents determine only the baroclinic component of the 
ocean currents so that we also need to obtain the barotropic component if we 
are to know the absolute current velocity. This can be done if we can assume 
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that the barotropic current velocities are constant from the top to bottom of the 
ocean (Fofonoff, 1962). Then, if we measure the deep ocean currents at a 
number of locations, we can add this to the geostrophic current to obtain the 
total current. However, this is more easily said than done, as it is no simple 
matter to make sufficient numbers of deep current measurements. So, for the 
time being, we shall assume that the geostrophic currents obtained from routine 
oceanographic surveys do give a fairly accurate representation of absolute 
velocities. 

To obtain the distribution of the geostrophic circulation over a large ocean 
area it is customary to construct the topography of the geopotential anomaly, 
in dynamic metres, relative to the 1000 decibar surface. The contour lines so 
constructed represent the stream lines of the current. If suitable map projec- 
tions, such as the Mercator or Polar Stereographic Projections are used, the 
current speeds at a given latitude will be inversely proportional to the spacing 
between the adjacent contours. (In an Equal-Area Projection used in the 
accompanying charts, this does not necessarily apply as the width between the 
latitude circles varies with the longitude.) Moreover, as the speed of these 
geostrophic currents is inversely proportional to the Coriolis term, which 
undergoes appreciable latitudinal changes particularly as the Equator is ap- 
proached, a given contour difference will yield speeds that increase equator- 
ward. For example, a contour difference of 0.1 dynamic metre per 1 " of latitude 
gives geostrophic speeds at latitudes 50°, 40°, 30°, 20°, 10" and 5" of 8, 10, 
12, 18, 36 and 72 cm/sec respectively. 

Fig. 4 Gwpc 
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a Northern Winter ~ 
In Fig. 4a the topography of the geopotential anomaly relative to the 1000- 
decibar surface for the winter period is shown. Comparison of the surface 
geostrophic currents (Fig. 4a) with those of the Pilot Chart (Fig. 2a) for the 
corresponding period indicates that, in general, the major surface currents 
derived from a mapping of dynamic topography agree with those given in the 
Pilot Chart. The western boundary currents such as the Kuroshio and the East 

1 

I 

Australian Current, and the eastern boundary currents such as the California 
Current and the Peru Current are all evident; so are the Oyashio, the East 
Kamchatka Current, the Subarctic Current, the North pacific Current, the 
Davidson Current, the New Guinea Current, the Antarctic Circumpolar Cur- 
rent, and the main features of the equatorial current system. There is also 
a suggestion of a poleward flow off southern South America corresponding to 
the Alaska Current in the North Pacific which is not clearly seen in the Pilot 
Chart. However, there are notable differences between the two distributions. 

In the geostrophically based circulations, the two countercurrents, the 
Kuroshio Countercurrent of the North Pacific and the East Australian Counter- 
current, both lie closer to their respective main currents. Also, the East Aus- 
tralian Countercurrent is not readily apparent in the Pilot Chart while it is 
clearly present in the geostrophic current. In addition, at the latitude of 20" to 
25"N of the western North Pacific the geostrophic current is directed eastward 
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Fig. 4 Geopotential Anomaly at the sea surface relative to the 1000-decibar surface 
(dynamic metres) of the Pacific Ocean (from whose gradient the geostrophic 
flow at the surface can be calculated). 
(a) Northern Winter (courtesy: Reid and Arthur, 1975) 
(b) Northern Summer (courtesy: Reid, 1961) (1 dynamic metre = 10 Joules/kg) 

while the Pilot Chart shows the flow to be westward. This westward flow is 
probably associated with the north Subtropical Countercurrent mentioned 
earlier. The North Equatorial Countercurrent is also wider than is indicated 
in the Pilot Chart. Between 5" and 10°S there is an evidence of a South 
Equatorial Countercurrent which does not appear in the central region. On the 
other hand, the large anticyclonic gyre depicted in the Pilot Chart off the coast 
of South America, is not evident in the geostrophic distribution. (Presumably, 
the above discrepancies between the two distributions for the South Pacific 
Ocean are due to a general lack of data in this region.) There is also the west- 
ward Antarctic Current which turns up in geostrophic circulations (e.g. Uda, 
1961; Reid and Mantyla, 1971 ) but which is omitted from available Pilot 
Charts. 

b Northern Summer 
In Fig. 4b the distribution of geostrophic surface currents for the northern 
summer is shown. A comparison of this distribution with that of the Pilot Chart 
for the corresponding period (Fig. 2b) again shows their consistency vis-h-vis 
the major surface currents. Nevertheless, the pair of anticyclonic gyres evident 
in the North and South Pacific in the Chart are again missing from the geo- 
strophic configuration. As during the winter, moreover, the North Equatorial 
Countercurrent determined through geostrophy is much broader than shown 
in the Chart. Contrary to the U.S. Pilot Chart, the geostrophic distribution also 
indicates the presence of an eastward current of oceanic extent centred around 
latitude ZOOS. This is the South Equatorial Countercurrent mentioned earlier. 
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Along the western side of the Pacific, the geostrophic currents again indicate 
the presence of a countercurrent to the east of each of the main poleward-flows 
formed by the Kuroshio and the East Australian Current. During the northern 
summer the westward Antarctic Current appears to be absent. But Reid and 
Arthur (1975) believe this to be related to the fact that few data are available 
for the northern summer, rather than to any seasonal changes. 

In general, therefore, the distribution of surface currents published in the 
Pilot Charts agree with those based on the geostrophic currents with regard 
to representing the major current systems of the Pacific Ocean, but disagree 
in detail in important aspects. The Kuroshio Countercurrent and the East 
Australian Countercurrents examined independently by Nitani (1972) and 
by Harnon ( 1965 ) , respectively, seem to indicate that the distributions 
represented by the geostrophic currents are closer to values obtained by other 
methods such as the Geomagnetic electrokinetograph (GEK). (The GEK 

method makes use of the principle which considers the moving sea water to 
be a conducting medium cutting the earth's magnetic field thereby creating 
a potential difference between the two extremities of the conductor. The poten- 
tial difference is measured between two conductors as they are towed behind 
a ship.) The Alaskan Stream which flows southwestward along the Aleutian 
lslands appears to be underestimated in both the Pilot Charts and the geo- 
strophic presentation. While both indicate surface speeds of approximately 
30 cm/sec, the measured speeds have been found to vary from 80 to 100 
cm/sec (Reed and Taylor, 1965; Favorite, 1967), making them about three 
times more rapid than has been observed in the past. 

One drawback to basing oceanic circulation on the geostrophic currents 
alone is that they do not take into consideration the direct effect of winds. 
Therefore, it is possible that in regions of strong winds the actual currents will 
be stronger or weaker than the calculated currents, depending on the direction 
of the winds. Similarly, ships' reports are likely to contain errors due to the 
influence of wind on the ship's drift. At the moment it is not possible to deter- 
mine which presentation offers the truer picture and therefore for the time being 
we need to consider both of these presentations in order to depict the surface 
ocean circulation. 

In general, we can think of the surface current pattern in the Pacific Ocean 
as composed of a number of idealized interlocking gyres, symmetrical about 
the Equator, some of which are closed and others which are not. These 
gyres are: 

(a) The Subarctic cyclonic gyre (closed), delineated by the southward East 
Kamchatka Current and Oyashio, the eastward zonal Sub'arctic Current, the 
northward Alaska Current and the westward Alaskan Stream. 

(b) The North Subtropical anticyclonic gyre (closed), delineated by the 
northward Kuroshio, the eastward zonal North Pacific Current, the southward 
California Current and the westward North Equatorial Current. It is to be 
noted, however, that the California Current is essentially a part of the Sub- 
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arctic Current and that most of the eastward North Pacific Currents turns south- 
ward before approaching the coast of North America. 

(c) The North Tropical cyclonic gyre (closed), delineated by the southward 
Mindanao Current, the eastward zonal North Equatorial Countercurrent, the 
returning northward current off the coast of Central America and the west- 
ward zonal North Equatorial Current. 

(d) The North Equatorial anticyclonic gyre (closure uncertain), which 
includes the zonal eastward North Equatorial Countercurrent and the west- 
ward Equatorial Current. 

(e) The South Equatorial anticyclonic gyre (closure uncertain), which 
includes the zonal eastward South Equatorial Countercurrent and the zonal 
westward Equatorial Current. 

( f )  The South Tropical cyclonic gyre (closure uncertain), which includes 
the zonal westward South Equatorial Current and the zonal eastward South 
Equatorial Countercurrent. 

(g) The South Subtropical anticyclonic gyre (closed), delineated by the 
southward East Australian Current, the eastward zonal South Pacific Current, 
the northward Peru Current and the westward zonal South Equatorial Current. 

(h)  The Subantarctic cyclonic gyre (apparently closed) ; this gyre is formed 
by the Antarctic Circumpolar Current but its closure is dependent on the 
existence of a return westward Antarctic Current which we know little about. 

Of these gyres, three in the North Pacific Ocean (Subarctic Gyre, North 
Subtropical Gyre and North Tropical Gyre) and two in the South Pacific Ocean 
(South Subtropical and South Subantarctic Gyre) appear to have a reasonably 
certain existence. However, the existence of the others, particularly the equa- 
torial gyres, is uncertain; in point of fact, they may not be gyres at all. 

5 Geostrophic Currents at Subsurface Depths 
Reid and Arthur (1975) have recently shown that the pattern of distribution 
of surface geostrophic currents recognized at the sea surface, especially the 
Subarctic and the Subantarctic gyres and the two Subtropical gyres, are present, 
though in reduced form, to depths as great as 3000 m. Below this only the 
Subarctic and Subantarctic gyres and the two western boundary currents in 
the South Pacific can be identified. They further indicated that the subtropical 
gyres below the sea surface appear to shift poleward at greater depths and 
that there is a broad eastward flow (relative to the deep water) in the lower 
latitudes and a poleward flow in the middle and high latitudes along the eastern 
boundaries. 

6 Circulation of the Intermediate Water 
There has been but one study made on the circulation of water in the inter- 
mediate layers of the combined North and South Pacific Oceans although 
similar studies have been conducted for various smaller regions. Reid (1965) 
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Fig. 5 Acceleration Potential (dynamic metres) relative to the 1000-decibar surface of 
the Pacific Ocean (from whose gradient the geostrophic flow can be calculated 
on the surface where the density is approximately 1.0268 g-cm3). (Courtesy: 
Reid, 1965) ( 1  dynamic metre = 10 Joules/kg) 

used data taken over a span of a century, beginning with the early information 
gathered by the historic Challenger expedition up to those collected to 1962, 
and examined the geostrophic flow along constant potential density surfaces 
(isentropic surfaces). The surfaces chosen varied in depth from approximately 
100 m in the Subarctic region to about 1000 m in the Subtropical region. 

Fig. 5 shows the topography of the acceleration potential (sometimes called 
the isentropic stream function) for the isentropic surface approximated by 
isopycnal surface of density 1.0268 gm/cm3. The contour lines denote the 
stream lines of the geostrophic currents along the isentropic surface. A wm- 
parison of these currents with those at the surface (Fig. 4) indicates that many 
of the features represented by the flow of intermediate waters are similar to 
those at the surface. Important differences do occur, however. Firstly, the 
poleward-flowing undercurrents on the eastern side of the ocean, the California 
Undercurrent of the North Pacific and the Peru-Chile Undercurrent, are un- 
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mistakably present in Reid's diagrams. The South Equatorial Countercurrent 
is also clearly shown and lies somewhat north of the position occupied at the 
surface. Because of its obvious manifestation in the subsurface layers some 
investigators claim that the South Equatorial Countercurrent may essentially 
be a subsurface current (Tsuchiya, 1968). Absent from Reid's presentation 
is the Equatorial Undercurrent. However, this is because the undercurrent is 
centred at a depth of approximately 100 m which is much shallower than the 
depth for which the currents of Figure 5 have been derived. Nor is there any 
sign of the Subtropical Countercurrents except for the eastward-flow evident 
to the north of New Zealand which Yoshida and Kidokoro ( 1967) claim might 
be connected with the Countercurrent. At intermediate depths the North Equa- 
torial Current extends about 500 km north of its boundary occupied at the 
surface and in the south the boundary of the South Equatorial Current extends 
almost 1000 krn more to the south of its boundary at the surface. 

7 Circulation of the Deep and Bottom Waters 
Compared to our knowledge of the circulation of the surface and intermediate 
waters the circulation of the deep and bottom waters is still poorly known. As 
one might expect, this is principally due to lack of deep measurements which 
are difficult to make because of the requirement for specialized heavy duty 
equipment and specially-made tapered steel cables; they are also very time 
consuming. As a result, most oceanographic surveys do not include deep 
measurements in their routine sampling programs. Much of our knowledge 
concerning the deep water circulation is therefore based on water mass analysis 
and observations of the change in the distribution of water properties, par- 
ticularly of potential temperature, salinity and dissolved oxygen content. Only 
at one location in the Pacific have deep bottom current velocities been mea- 
sured, in the Tonga Trench. 

Unlike the Atlantic Ocean, the Pacific Ocean has only one source of deep- 
bottom water - the Antarctic Ocean. Because the deep-bottom waters of the 
Pacific are more homogeneous than any of the other oceans, this deep-bottom 
water is simply designated as The Pacific Deep Water (Montgomery, 1958; 
Cochrane, 1958). It is not pure Antarctic Bottom Water but is a mixture, 
although the water formed at the Antarctic comprises more than 50% of the 
mixture (Gordon, 1971 ) . The main source of Antarctic Bottom Water is in 
the Weddell Sea adjacent to the Atlantic Ocean but minor sources are found 
in the Ross Sea region adjacent to the Pacific Ocean and in the region of Amery 
Ice Shelf adjacent to the Indian Ocean (Gordon, ibid). Basically, the Pacific 
Deep Water is believed to be a mixture of the water flowing down the con- 
tinental shelf of Antarctica and the water of the Antarctic Circumpolar Current 
(Sverdrup et al., 1942). There is even some evidence of deep water formed 
in the North Atlantic Ocean being mixed into this Deep Water (Reid et al., 
1968). 

As early as over a century ago there were suggestions that the deep bottom 
waters had origins outside of the Pacific Ocean (Prestwick, 1871, as quoted 
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Fig. 6 Deep Bottom Currents of the Pacific Ocean as deduced by a number of sources. 

by Reid, 1969), and as early as 1929 Wiist (Wiist, 1929, as quoted by Reid, 
1969) had traced the cold bottom waters of the western North Pacific Ocean 
to the Antarctic Circumpolar Current. More recently, from 1960 onward, 
several investigators have examined, among other things, temperature, poten- 
tial temperature, salinity, dissolved oxygen content and radio carbon (C14) 
and have shown that the earlier beliefs were correct. They have further demon- 
strated that the bulk of the Pacific Deep Water flows northward along the 
western side of the ocean, mainly along the Tonga-Kermadec Trench (lying 
east of New Zealand) (Wooster and Volkmann, 1960; Knauss, 1962; Gordon, 
1972; Wong, 1972). Reid et al. (1968) have examined a detailed oceano- 
graphic section taken along latitude 28"15'S and have estimated that the 
latter current forms a relatively strong northward-flowing deep current, less 
than 100 km wide, which is confined to depths of 2500 to 4500 m. They esti- 
mated the volume transport of this northward flow to be 8 to 12 sverdrups 
(a  sverdrup is equivalent to lo6 m3/sec). This value compares with 12 to 15 
sverdrups obtained by Bolin and Stornrnel ( 196 1 ) from consideration of the 
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steady-state budget of heat, mass, salt and radio carbon, and with 15 to 25 
sverdrups obtained by Knauss (1962) based on the distribution of temper- 
ature, salinity and carbon 14 data. Further south along the latitude 43'15's 
section, Reid et al. (1968) failed to observe such an intensified current. In 
Fig. 6 the direction of the deep-bottom currents determined by the various 
investigators are shown. Northward flow is seen to occur along the eastern side 
of New Zealand, whereupon approaching the Equator, a part continues north- 
ward or northwestward while the remainder veers eastward (Knauss, 1962; 
Wong, 1972). Edmond et al. ( 1  971) indicate that an eastward flow also 
occurs just south of the Hawaiian Islands, and then turns to flow northward. 
According to the work of Reed (1969) this northerly flow appears to continue 
northward until at least latitude 35ON. The main northerly flow, however, 
seems to occur further west along Longitude 170°E (Knauss, 1962; Reid, 
1969; Wong, 1972). More recently Reed (1970) has shown that the deep 
water which has flowed northward can continue eastward along the southern 
side of the Aleutian Islands. 

The only location in the Pacific where deep bottom current measurements 
have been made is situated in the Tonga Trench at Latitude 9OS, Longitude 
169OW in a region northeast of the Samoa Islands (Reid, 1969). The deep 
channel here appears at depths greater than 5000 m. It is only 50 km and 200 
km wide at depths of 5000 and 4000 m, respectively. The highest average speed 
of this current, 15 cm/sec, was observed at a depth of 4800 m and was directed 
toward north-northeast with maximum speeds reaching as high as 20 cm/sec. 
Even at a depth of 3 m above the bottom (5275 m) a northerly current with 
speed slightly less than 5 cm/sec was observed. 

Stommel (1957) has proposed a simple thermocline circulation model of 
such abyssal circulation that is compatible with the wind-driven circulation 
above the main thermocline. It is this circulation pattern (Stommel, 1958) 
which appears in Fig. 6. An intensified northerly abyssal current is depicted in 
this hypothetical model which generally agrees with observations. 

In the preceding three sections I have attempted to outline the present status 
of knowledge on the horizontal circulation of the surface, intermediate and deep 
bottom water. Very little is known about the temporal variations of these 
currents, except for those that have been examined within 500 km of the coast. 
Even for these, detailed information on even the annual variations of the cur- 
rents is not available. 

8 Volume Transport of Water 
The ocean currents transport huge quantities of heat and salt from one place 
to another and for this reason the volume transport of water, rather than the 
surface speed of the currents, has more significance to the overlying atmo- 
sphere. At the surface and intermediate levels, the warm, saline waters are 
transported poleward with the larger western boundary currents (Kuroshio, 
East Australian Current) and Equatorward by the eastern boundary currents 
(California Current, Peru Current). The surface current speed and the volume 
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Fig. 7 Geostrophic Current Velocity Structures (cm/sec) of some of the major currents 
of the Pacific Ocean: (a) Kuroshio and Oyashio. ( b )  North Pacific Current, 
Subarctic Current, Alaskan Stream, California Current and Alaska Current. 
(c) Equatorial Current and Equatorial Undercurrent (Adapted from Knauss, 
1960). 
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transport are generally correlated and therefore in many cases the substitution 
of current speed for implied transport is applicable. However, the velocity 
structures vary with different currents and it is dangerous to assume that this 
correlation can be taken for granted. A few examples will be shown to demon- 
strate this. In Fig. 7a are shown the vertical geostrophic velocity structures of 
the Kuroshio and the Oyashio. While the speed of the Kuroshio drops to about 
% of the surface speed at a depth of 500 m, the Oyashio, although a much 
smaller current, possesses 3/4 of the surface speed at 500 m. Fig. 7b shows the 
vertical velocity structures of the main currents of the North Pacific. The 
current speed at a depth of 500 m for the North Pacific Current and the Alaskan 
Stream is one half of the surface value whereas the corresponding value for 
the Alaska Current is % and for the California Current Y5. This comparison 
is by no means complete as even within the same current the ratio of the 
current speed at the surface and 500 m can vary from location to location at 
a given time and from time to time at the same location. It is when there is 
an appreciable subsurface current that the reliance of the volume transport 
upon the surface current could be downright wrong. The best example can be 
seen from the current velocity structure at the Equator shown in Fig. 7c, where 
not only is the current direction reversed but the subsurface velocity is much 
greater. 

Estimates of the volume transport of the major currents of the Pacific Ocean 
have been made by Sverdrup et al. (1942) using data collected prior to 1942 
and these values will be later compared to the more recent estimates. There is 
only one study that I am aware of that shows the distribution of the volume 
transport (relative to the 1500 decibar surface) for the entire Pacific Ocean. 
This has been prepared by Burkov (1966). His chart, which uses only the 
February data, is shown in Fig. 8. Comparison of the distributions of volume 
transport indicated in this chart with that of the surface geostrophic currents 
obtained by Reid and Arthur (1975) for the winter shows that the gross 
features of both are similar. The major difference, as expected, occurs along the 
equatorial belt where Burkov (1966) added the contribution of the Equatorial 
Undercurrent which gave a net transport to the east. Another difference is 
present in the South Pacific between the Latitude 20" and 30"s where the 
volume transport is westward while the surface current is eastward. The trans- 
port, however, is consistent with the direction of the currents at the inter- 
mediate level (Reid, 1965) which suggests that in this region the transports 
in the intermediate depths contribute more to the integrated transport than 
do the surface currents. In order to show the comparison between these trans- 
ports with those derived from the application of Sverdrup's theory (Sverdrup, 
1947; Fofonoff, 1962) the Sverdrup transport obtained by the consideration 
of the mean wind stress (Burkov, 1966) is shown in Fig. 9. Although the 
magnitudes of transports so obtained are somewhat smaller than those indi- 
cated in the observed geostrophic transports (Fig. 8 ) ,  the main features are 
consistent with the "observed" ones except at the Equator and near the region 
of the boundary currents, which is to be expected. 
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Fig. 8 Geostrophic Transport relative to the 1500-decibar surface in the Pacific Ocean 
for February. The Transport between adjacent isolines is 10 sverdrups (Adapted 
from Burkov, 1966). 

In Fig. 10, a chart showing estimates of transports determined by various 
investigators, is shown. The values determined prior to 1942 are distinguish- 
able by the brackets around them. These calculations (Table I) are practically 
all the ones that have been made to date and show how few estimates there 
are. The main feature of the magnitudes shown here is that, while relative 
agreement is present between the estimates for the same current, it is not 
uncommon to detect magnitudes that differ by a factor of 2 and in some cases 
by an order of magnitude. The most conspicuous feature of this illustration is 
that, while many transport values are available for the Kuroshio and the Equa- 
torial region, they are almost non-existent in the South Pacific except for the 
few values estimated for the Cape Horn Current and the East Australian 
Current. 

The Antarctic Circumpolar Current appears to transport the greatest amount 
of water in the Pacific Ocean. Since an early estimation of 120 sverdrups, no 

North Pacific Oc 
Alaska Curre1 
1955 data, NO. 

Alaskan Strea 
1970). 
California CUI 
1966; NORPAC 

East Kamchat 
Kuril Current 
Kuroshio: (Sv, 
Kuroshio Cou 
Luzon Current 
Mindanao Cur 
North Pacific ( 
North Subtrop 
Oyashio: (Hira 
Subarctic Curr 
Taiwan Curren 
Transport thro 
Transport thro 
1974; Hughes r 

South Pacific Oce 
Peru Current: ( 
East Australian 
Antarctic Circ~ 
Cape Horn Cur 
Nowlin, 1971; ; 
South Subtropia 

Equatorial Pacific 
North Equatori 
zawa, 1964; 196 
North Equatorii 
1961 ; ~ s u c h i ~ a ,  
1967; M~SUZ~W:  
Equatorial Curr 
Magnier et al., 1 
South Equatoria 

Undercurrents: 
Equatorial Undl 
Masuzawa, 196; 
Magnier er al., 1 
California Unde 
Peru-Chile Undc 

attempt has bet 
been several est 
where the transj 
of current mea5 
port might ever 
no net transpor 
and a westward 

I made by Ostapc 
1 

152 S. Tabata 



TABLE 1. Sources of Information on the Volume Trans~ort  Estimates for the Pacific Ocean 

e in the Pacific Ocean 
10 sverdrups (Adapted 

ermined by various 
)42 are distinguish- 
le I) are practically 
few estimates there 
that, while relative 
: current, it is not 
1 and in some cases 
~f this illustration is 
jshio and the Equa- 
lcific except for the 
he East Australian 

the greatest amount 
120 sverdrups, no 

North Pacific Ocean: 
Alaska Current: (Sverdrup et al., 1942; Bennett, 1959; Fofonoff and Tabata, 1966, NORPAC 
1955 data. NORPAC Committee. 1960). 
Alaskan stream: (Bennett, 1&9; ~gvorite, 1967; Ingraham and Favorite, 1968; Ohtani, 
1 970). 
~alifbrnia Current: (Sverdrup et al., 1942; Wooster and Reid, 1963; Wyrtki, 1966; Pavlova, 
1966; NORPAC 1955 data, NORPAC Committee, 1960). 
East Kamchatka Current: (Arsen'ev, 1967; Ohtani, 1970; Reid, 1973; Hughes et al., 1974). 
Kuril Current: (Hirano, 1957; Hata, 1965). 
Kuroshio: (Sverdrup et al., 1942; Masuzawa, 1967; 1972; Worthington and Kawaii, 1972). 
Kuroshio Countercurrent: (Masuzawa, 1967 ; Nitani, 1972). 
Luzon Current: (Nitani, 1972). 
Mindanao Current: (Sverdrup et al., 1942; Masuzawa, 1968; Nitani, 1972). 
North Pacific Current: (Sverdrup et al., 1942; NORPAC 1955 data, NORPAC Committee, 1960). 
North Subtropical Countercurrent: (Uda and Hasunuma, 1969). 
Oyashio : (Hirano, 1957 ; Sugiura, 1959; Hata, 1965). 
Subarctic Current: (Sverdrup et al., 1942; NORPAC 1955 data, NORPAC Committee, 1960). 
Taiwan Current: (Nitani, 1972). 
Transport through Bering Strait: (Coachman and Aagard, 1966). 
Transport through passes along Aleutian Islands: (Favorite, 1974; Takenouti and Ohtani, 
1974; Hughes et al., 1974). 

South Pacific Ocean: 
Peru Current: (Sverdrup et of . ,  1942; Wooster and Reid, 1963; Wyrtki, 1966). 
East Australian Current: (Hamon, 1965; 1970). 
Antarctic Circumpolar Current: (Sverdrup et al., 1942). 
Cape Horn Current: (Clowes, 1933; Sverdrup et al., 1942; Ostapoff, 1960; 1961; Reid and 
Nowlin, 1971; Mann (pers. comm.) 1975). 
South Subtropical Countercurrent: (Hamon, 1965; Stanton, 1973). 

Equatorial Pacific Ocean: 
North Equatorial Current: (Sverdrup et al., 1942; Montgomery and Stroup, 1962; Masu- 
zawa, 1964; 1967; Wyrtki, 1966). 
North Equatorial Countercurrent: (Sverdrup et al., 1942; Knauss and Pepin, 1959; Knauss, 
1961; Tsuchiya, 1961; Montgomery and Stroup, 1962; Wyrtki, 1966; Wyrtki and Kendall, 
1967; Masuzawa, 1967). 
Equatorial Current: (Montgomery and Stroup, 1962; Wyrtki, 1966; Hisard et al., 1970; 
Magnier et al., 1973). 
South Equatorial Countercurrent : (Wooster, 1961 ; Jarrige, 1968). 

Undercurrents: 
Equatorial Undercurrent: (Knauss, 1960; Montgomery and Stroup, 1962; Wyrtki, 1966; 
Masuzawa, 1967; Jones, 1969; Hisard et al., 1970; Rotschi, 1970; Tsuchiya, 1970; 1972; 
Magnier et al., 1973; Taft and Jones, 1973). 
California Undercurrent: (Wooster and Jones, 1970). 
Peru-Chile Undercurrent: (Wooster and Gilmartin, 1961). 

attempt has been made to determine additional values. However, there have 
been several estimates made for the Cape Horn Current through Drake Passage 
where the transport was found to vary from 90 to 237 sverdrups. A recent set 
of current measurements made in Drake Passage indicates that the net trans- 
port might even be zero (K. Mann, private communication). A suggestion of 
no net transport, with eastward transport of 40 sverdrups in the upper layers 
and a westward transport of same magnitude in the lower layers was previously 
made by Ostapoff (1960). 
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Fig. 9 Mean Sverdrup-Mass Transport in the Pacific Ocean. The Transport between 
adjacent isolines is 5 sverdrups (Adapted from Burkov, 1966). 

In the equatorial region the total westward transport by the North Equatorial 
Current and the Equatorial Current is approximately 40 to 120 sverdrups. 
The eastward transport of the combined flow of the three countercurrents, the 
North Equatorial Countercurrent, the Equatorial Undercurrent and the South 
Equatorial Countercurrent is similar (30 to 120 sverdrups) to the volume of 
westward transport. 

Where the westward North Equatorial Current approaches the Philippine 
Islands, it splits to form the northward Kuroshio and the southward Mindanao 
Current. A little more than one-half of the volume contained in the North 
Equatorial Current flows as the Kuroshio while the rest goes into the Mindanao 
Current (Nitani, 1972) which then feeds into the return flow of the North 
Equatorial Countercurrent. Masuzawa (1964) has noted that the transport 
of the North Equatorial Current increases progressively from the longitude of 
theHawaiian Islands to off the Philippine Islands by approximately 40 sverdrups 
so that the total volume transport before separation can be greater than 100 
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Fig. 10 Volume Transport of Water (sverdrups) of the various current systems as 
determined to date. 

sverdrups. The implication of this increase is that a considerable amount of 
water must be fed into the North Equatorial Current by the Subtropical gyre, 
of which the Kuroshio is a part. Earlier estimates of the Kuroshio have placed 
the transport at 40 to 65 sverdrups, but more recent measurements have indi- 
cated that it is considerably greater than this, as high as 88 sverdrups 
(Worthington and Kawaii, 1972). The Kuroshio is the most important current 
in the North Pacific Ocean and is also the most studied current of the Pacific. 
It is a narrow, swift flow with speeds reaching 270 cm/sec (Maritime Safety 
Agency, 197 1 ) . It is about 100 km wide and several hundred metres thick. 

The southward transport of water by the Kuroshio Countercurrent is about 
one quarter of the northerly transport of the Kuroshio (Nitani, 1972). This 
Countercurrent, considered at one time as part of the Subtropical gyre, appears 
to be quite distinct from it, although the part of the Kuroshio that veers to 
form the gyre is often included as the Countercurrent. While the Kuroshio 
transports the warm water poleward along the western side of the North 
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Pacific, the cold Kuril Current-Oyashio transports from 6 to 16 sverdrups 
equatorward. There are indications that the latter transports might be greater 
during winter (Hata, 1965). The East Kamchatka Current transports from 
8 to 20 sverdrups and feeds into the Kuril Current-Oyashio system. Because 
transport of the East Kamchatka Current appears to be larger than that 
of the Kuril Current - Oyashio it is believed that an appreciable amount of 
the former must feed into the eastward Subarctic Current. The combined 
Subarctic Current and the North Pacific Current appears to transport at least 
20 sverdrups according to estimates made from the NORPAC data of Summer 
1955 (NORPAC Committee, 1960). About one-half of this volume can be 
assigned to the Subarctic Current. It is possible that by using a reference level 
greater than the 1000 decibar surface, the transport may be considerably 
greater as Bennett (1959) has noted for some areas of the Gulf of Alaska. 

The North Pacific Current appears to turn southward long before it ap- 
proaches the North American coast whereas the Subarctic Current continues 
to flow eastward to the vicinity of the coast where it splits to form the north- 
ward Alaska Current and the southward California Current. At Longitude 
150°W, an eastward volume transport of at least 12 sverdrups is indicated; 
one half of this goes into the Alaska Current and the other half into the Cali- 
fornia Current. 

Observations along "Line P" between Station P (Lat. 50°N, Long. 145"W) 
and the coast indicate that, relative to the 1000-decibar surface, about 7 
sverdrups is transported northward - extending the reference level to the 
3500-decibar surface doubles this estimate. Contrary to what one would expect, 
however, no clear indication of a winter strengthening of geostrophic transport 
off the B.C. coast has been noted (Fofonoff and Tabata, 1966). The main 
current in this region, the Alaska Current, continues northward then backs 
and feeds into the intensified, narrow (200 km) Alaskan Stream. Bennett 
( 1959) originally suggested that the transport of the Stream was at least 18 
sverdrups, a figure borne out by subsequent observations which have indicated 
it to vary from 5 to 20 sverdrups (Ohtani, 1965; Favorite, 1967; Ingraham 
and Favorite, 1968; Favorite, 1974). Measurements made off Adak Island 
(situated approximately 20 km east of the International Date Line in the 
Aleutian Chain) show that during the winter the transport may double that of 
summer (Ingraham and Favorite, 1968). For the most part the Alaskan Stream 
flows westward along the Aleutian Islands, although a portion of it does enter 
the Bering Sea through the deeper passes between the islands (Favorite, 1967). 
Near the terminus of the Aleutian chain, however, the bulk of the westward 
transport also enters the Bering Sea at a region east of the Komandorskii Islands 
(300 km east of Kamchatka Peninsula). This northward flow is estimated to 
be from 10 to 26 sverdrups. As some water, about 4 sverdrups, also enters the 
current before it reaches Komandorskii Island (Favorite, 1974), there must 
be some cross-stream flow taken from the eastward flowing Subarctic Current 
to sustain this northward transport. 

The water that flows into the Bering Sea generally conforms to the cyclonic 
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circulation there, so that only a fraction of it finds its way northward into the 
Arctic Ocean (95 to 2% sverdrups). Therefore, the main portion of the 
Alaskan stream water eventually feeds into the relatively strong East Kam- 
chatka Current. Hughes et al. (1974) have proposed that, in light of water 
balance considerations, 28 sverdrups must enter the Bering Sea through Near 
Strait east of Komandorskii Island during both winter and summer. However, 
because the East Kamchatka Current seems to transport as much as 35 sver- 
drups in winter and 20 sverdrups in summer, about 5 sverdrups must be lost 
from the Bering Sea in summer through the other passes of the Aleutian Islands 
and that 10 sverdrups must be gained by the Sea during the winter through 
these same passes. 

Returning to a discussion of the eastern end of the Subarctic Current, we 
find that its southward-turning branch, the California Current, which is a part 
of the large anticyclonic gyre of the North Pacific, continues southward off 
the coast of the United States transporting from 4 to 13 sverdrups until it 
finally feeds into the North Equatorial Current before reaching the coast of 
Mexico. There is, however, some suggestion that the California Current can 
extend as far as the coast of Central America before it joins the North Equa- 
torial Current (Tsuchiya, 1974). Further, an appreciable amount of the flow 
from the North Equatorial Countercurrent is fed back into the North Equa- 
torial Current (Tsuchiya, 1968, 1974). 

The poleward-flowing California Undercurrent is a relatively small current, 
having a breadth of about 20 km and thickness of about 300 m; one set of 
volume transport estimates yields a value of only 2 sverdrups (Wooster and 
Jones, 1970). It flows along the continental slope and the water characteristics 
suggests that it may have its origin in the North Equatorial Countercurrent. 
Tibby (1941) analyzed the deep waters along the Pacific Coast of the U.S. 
and found that off California the deep water contained about 50% equatorial 
water while the remainder was Subarctic water. Off the coast of Oregon the 
percentage of equatorial water drops to 35 %. This water probably is fed by 
that part of the North Equatorial Countercurrent that does not join the North 
Equatorial Current. 

It has been postulated that the poleward-flowing Davidson Current (or the 
California Countercurrent, which it is sometimes called) might be due to the 
surfacing of the California Undercurrent (Sverdrup et al., 1942) when the 
northerly winds weaken or disappear. But the association of these two currents 
is still uncertain. 

The poleward-flowing Davidson Current is a seasonal current that occurs 
during October through February along the Pacific coast of the United States 
and extends from the coast of southern California to northern Washington and 
is likely to extend even further northward (Burt and Wyatt, 1964; Schwartlose, 
1964; Boisvert, 1969; Wyatt et al., 1972). I t  is a relatively narrow current with 
the breadth generally within 200 km, although it can exceed 300 km (Burt 
and Wyatt, 1964). It has a mean speed of approximately 10 cm/sec but can 
reach values as high as 100 cm/sec (Wyatt et al., ibid) in November. On the 
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other hand, Boisvert (1969) has noted that the maximum speed is reached 
generally in January. 

The currents and transports in the Southern Pacific Ocean, except for the 
East Australian Current, are poorly documented. Some studies have been 
conducted off the South American coast and there have been appreciable 
amounts of data collected off the coast of Peru and Chile but little of the data 
is widely available. At this stage it is perhaps sufficient to note that the Peru 
Current is the southern counterpart of the California Current and the Peru- 
Chile Countercurrent, which transports about 3 sverdrups (Wooster and Gil- 
martin, 1961 ) , is the southern counterpart of the California Countercurrent. 
The Peru Current is, however, wider in breadth than the California Current and 
appears to transport about twice the volume of water (Wooster and Reid, 
1963). White (1969) showed that part of the transport that splits from the 
eastward-flowing Equatorial Undercurrent flows southward as far as 5"s off 
Peru. It is possible that this flow may contribute to the Peru-Chile Undercurrent 
(the southern counterpart of the California Undercurrent) but it is more likely 
that its source water is the South Equatorial Countercurrent. 

We shall return to the equatorial region later, but first we shall conclude our 
discussion of the currents in the South Pacific by describing the pertinent 
features of the East Australian Current. 

The East Australian Current is the southern counterpart of the Kuroshio. 
Though its features are less spectacular, it is nevertheless a major current trans- 
porting water at the rate of 12 to 57 sverdrups (Hamon, 1965, 1970) and 
having surface speeds comparable to the Kuroshio (200 cm/sec). It has a 
width of about 150 km and appears to be fed by the westward-flowing waters 
of the South Equatorial Current, which, the data of Wyrtki (1966) and Reid 
(1961, 1965) suggest, feeds into the East Australian Current via the Coral 
Sea. Scully-Power (1973), on the other hand, claims, on the basis of one set 
of data, that only 10% of the flow into the Coral Sea is associated with South 
Equatorial Current through this area and that most of the water originates with 
the South Equatorial Current but comes from south of New Caledonia. Studies 
by Hamon (1965, 1970), however, indicate that the East Australian Current 
is fed by water from the area to the north of New Caledonia. Apparently the 
only safe statement one can make on this subject is that during the northern 
winter, at least, the origin of this water appears to be the equatorial region 
(Burkov, 1966; Reid and Arthur, 1975). Irrespective of its origin, we do 
know that part of the Current continues to flow poleward along the eastern 
coast of Australia to as far as Tasmania and that there is a significant north- 
ward-flowing countercurrent just east of the Current which subsequently turns 
eastward. Hamon (1970), upon inspection of the details of the flow, argues 
that the East Australian Current is not a well-defined current but is a series 
of strong anticyclonic eddies that gradually moves poleward. Apparently no 
cruise data has shown it to be continuous along the coast at any one time. 
Monthly sea level heights, measured at Lord Howe Island, between Australia 
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and New Zealand, show variations of -c- 30 cm which is attributed to the effect 
of the major water movements associated with the current (Hamon, 1965). 

Not all the currents I have mentioned so far have been confirmed beyond all 
reasonable doubt. For example, the eastward Subtropical Countercurrent, 
which supposedly flows between latitudes 20'-25"N, has not yet been con- 
firmed. Nevertheless, since it has been suggested that it has a counterpart in 
the Atlantic Ocean at similar latitudes it is perhaps worthwhile to comment 
upon it, if only to instigate further programs to clarify its existence. Interest in 
this current developed after Yoshida and Kidokoro (1967a, 1967b), upon 
examining the distribution of wind stress over the Pacific Ocean and the wind- 
driven Sverdrup type transports, noted the occurrence of a narrow belt of east- 
ward-flowing currents in the North Pacific. They concluded that the formation 
of such a current is to be expected and explained it was associated with the 
trough in the curl of the wind stress, analogous to the explanation given for the 
occurrence of the equatorial countercurrents which also lie in the trough in the 
curl of the wind stress. Such an eastward current has been noted in the past 
(Uda, 1955; Yamanaka et al., 1965) and was evident in the Pilot Charts pre- 
pared by the Japanese Hydrographic Department based on data collected 
between 1924 and 1934 (Japanese Hydrographic Department, 1936). Uda 
and Hasunuma ( 1969) re-examined all the previous pertinent data and con- 
cluded that such a current does indeed occur and that it can transport as much 
as 18 sverdrups. Other evidence also support the existence of such a current 
(Seckel, 1968; Robinson, 1968, 1969; Reed, 1 9 7 0 ~ ) .  In the distribution of 
surface geostrophic currents prepared by Burkov (1 966) and Reid and Arthur 
(1975) a suggestion of this current is indicated for the winter period. In the 
Atlantic, Voorhis and Hersey ( 1964) observed similar eastward-flowing cur- 
rent in the Sargasso Sea. In the South Pacific Ocean, the eastward-flowing 
current, which continues from the previously mentioned northward-flowing 
countercurrents of the East Australian Current, is thought to be associated with 
this Subtropical Countercurrent (Yoshida and Kidokoro, 1967b). Observations 
made along longitude 170°E indicate that such an eastward current exists in 
the Southern Hemisphere also (Merle et al., 1969; Rotschi, 1973). The recent 
atlas of surface currents of the South Pacific Ocean published by the authorities 
of the United Kingdom (Meteorological Office, 1967) indicates a weak east- 
ward flow between 20' and 30"s in the region west of 140" W during all seasons. 

So many studies have been made on the equatorial current system during 
the past two decades following the discovery of the Equatorial Undercurrent 
in 1952 that it might be worthwhile to give it more attention than the others, 
since even the South Equatorial Countercurrent was only discovered a decade 
and a half ago. 

The most conspicuous feature of the equatorial current system is the presence 
of the well-defined zonal flows that extend from one side of the ocean to the 
other except, of course, near the continents. The two westward currents on the 
poleward side, the North Equatorial Current and the South Equatorial Current, 
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are fed by the winddriven currents of the Subpolar and Subtropic waters. The 
North Equatorial Current is a broad current, about 1000 km wide, which trans- 
ports approximately 20 sverdrups at the eastern side. Of this, about one half 
comes from the California Current and the other half from return flow of the 
Equatorial Countercurrent (Sverdrup, et al., 1947). The North Equatorial 
Current is further reinforced by the addition of water from the north via the 
North Pacific Current (subtropical gyre), so that by the time it arrives off the 
Philippine Islands it can be transporting well over 100 sverdrups (Masuzawa, 
1964). This transport is twice as large as had been estimated previously. 

The South Equatorial Current also appears to be a broad current, although 
its transport is not really known. Judging from values interpolated from the 
chart of Burkov (1966) (Fig. 8) it is somewhat smaller than that of the North 
Equatorial Current. However, since the Peru Current can feed up to 20 
sverdrups into it, it may in fact be as large as the northern counterpart. 

The westward Equatorial Current is also a broad current having a width of 
approximately 1000 km, lying between 5"N and 5"S, and is estimated to 
transport as much as 63 sverdrups (Montgomery and Stroup, 1962; Hisard 
et al., 1970; Magnier et al., 1973). It is believed to be principally driven by 
the Southeast and Northeast Trade Winds. Surprisingly, it is one of the least 
studied of the equatorial currents. Imbedded in the Equatorial Current is the 
jet-like eastward Equatorial Undercurrent whose core is at a depth of ap- 
proximately 100 m. This current is symmetrical about the Equator and has a 
core velocity exceeding 150 cm/sec (Knauss, 1960, 1966) and a volume trans- I 

port estimated to be between 19 and 42 sverdrups (Knauss, ibid; Montgomery I 

and Stroup, 1962; Tsuchiya, 1970; Knauss and Pepin, 1959). The origin of ! 
this current is believed to be in the region of the Coral Sea, or near the Solomon 
Islands (Tsuchiya, 1967, 1968, 1970) or north of New Guinea (Hisard et al., 
1970; Rotschi, 1973). At the western extremity of the current, the flow in the 
upper oceanic layers has at times been observed to reverse with the reversal 
of the winds although the currents below the thermocline remain unaffected 
(Rotschi, 1973). The Undercurrent is also known to reach the surface when 
the Trade Winds are weak (Jones, 1969). Moreover, Taft and Jones (1973) 
have indicated that the Undercurrent is weakest when the Southeast Trades I 

are strongest and when the Equatorial Current is strongest. On the contrary, 
Wyrtki ( 1974a, 1974b) has noted that the Undercurrent is in phase with the 
Equatorial Current above, being strongest in Spring and weakest in Autumn. 
These two statements are not in accord and therefore more observations are 
needed to clarify them. Finally, at its eastern terminus more water of this Under- 
current is discharged to the north than to the south (Tsuchiya, 1967). I 

Of the two eastward-flowing countercurrents, the North Equatorial Counter- 1 

current (situated between the westward-moving North Equatorial Current and I 

the westward-moving Equatorial Current) is more well-developed than the 1 
South Equatorial Countercurrent. It occurs in a relatively narrow belt between 
3 and 8"N and its transport varies from 12 to 61 sverdrups (Montgomery and 
Stroup, 1962; Knauss and Pepin, 1959; Tsuchiya, 1961 ; Knauss, 1961 ; Wyrtki 
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Fig. 1 1  Cross-section of current velocities for Central Equatorial Pacific (cm/sec) at 
Longitude 140°W. The values afeGeoetrophic Velocities (relative to 1000-metre 
surface) except near the Equator where measured values were used. The shaded 
portion indicates Eastward flow (Adapted from Knauss, 1963). 

and Kendall, 1967; Masuzawa, 1967). Knauss ( 196 1 ) has noted that transport 
values should be considered with caution as he has observed a change from 60 
sverdrups to practically zero within a span of 11 months. The South Equatorial 
Countercurrent has only been thoroughly examined since its discovery in 1959 
(Reid, 1959, 1961, 1965; Wooster, 1961; Tsuchiya, 1968; Jarrige, 1968; 
Rotschi, 1973). It has already been discussed in more detail earlier in this 
paper so it should be sufficient to say that it is a much less-developed current 
than its northern counterpart and is only about one half as wide. Estimates of 
its transport varies from 2 to 20 sverdrups (Wooster and Gilrnartin, 1961; 
Jarrige, 1968). In Fig. 11 the cross-section of the equatorial currents in the 
Central Equatorial Pacific is shown. All the equatorial currents discussed are 
depicted. It is to be noted that the South Equatorial Countercurrent being 
weaker than the other equatorial currents can be sensitive to forces that govern 
the circulation in the equatorial belt. One illustration by Reid and Arthur 
(1975) indicates that while it appears to be present along the western and 
eastern side of the ocean it is missing in the central part. In a situation like 
this it is possible that the South Equatorial Current may cross the position 
occupied by the South Equatorial Countercurrent and merge with the Equa- 
torial Current. 

There is a body of evidence which suggests that the Equatorial Undercurrent 
and the North Equatorial Countercurrent have a common origin (Tsuchiya, 
1961). This region is considered to be somewhere north of New Guinea 
(Burkov and Ovchinnikov, 1960; Rotschi, 1973) or in the area of the Coral 
Sea (Tsuchiya, 1967, 1968). Tsuchiya (1970) also suggests that the South 
Equatorial Countercurrent may also originate from the same general area. 
Merle et al. (1973) have further examined the origin of these currents and 
have indicated that the Equatorial Undercurrent has 2 cores at its western 
extremity - one at 100 m and another at 200 m, and that only the deeper core 
has its origin in the south. Since the North Equatorial Current splits near the 
Philippines, with about half its transport going to form the northward Kuroshio 
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and the other half going to form southward Mindanao Current, and since most 
of the latter flow presumably feeds into the returning North Equatorial Counter- 
current, there must be roughly 25 to 50 sverdrups within the North Equatorial 
Current which can feed into the North Equatorial Countercurrent. This magni- 
tude is somewhat similar to the estimated volume transport of the North 
Equatorial Countercurrent (Fig. 10) and therefore this transport can be ac- 
counted for by the consideration of the contribution from the North Equatorial 
Current alone. The contribution from the water south of the Equator feeding 
into the North Equatorial Countercurrent must therefore be relatively small. 

Not much is known about the seasonal variation of these equatorial currents 
although Wyrtki ( 1974a, 1974b) has observed that the North Equatorial 
Current and the North Equatorial Countercurrent are both strongest in the 
Autumn and weakest in Spring. The strength of these currents are apparently 
strongly influenced more by the position of the Trade Winds than by their 
strength. When the Northeast Trades are strong and in a southerly position 
during the first half of the year, both the North Equatorial Current and the 
North Equatorial Countercurrent are weak. However, when the Northeast 
Trades are weaker but in a more northerly position during the second half of 
the year, both currents are strong. Tsuchiya (1974) has further shown that 
there is a good correlation between the position of the North Equatorial 
Countercurrent and that of the atmosphere's Intertropical Convergence Zone, 
supporting Wyrtki's (1974a, 1974b) view that the position of the Trade Winds 

I 

are more important than the velocity in determining the distribution of currents. I 

In general, most of the currents in the equatorial current system can be 1 
explained through a consideration of the EkmanSverdrup type of wind-driven I 
transports. The westward North and South Equatorial Currents are attributed 
to the wind-driven transports that bring in subpolar and subtropical waters I 

I 

toward the Equator and then force them westward, as mentioned earlier. The I 

two countercurrents, the North and South Equatorial Countercurrents are 
directed generally against the prevailing Trade Winds. This is not an unex- 
pected result and Yoshida (1961) has indicated that their presence can be 
explained from a consideration of the wind-driven transport alone. In particular, 
their occurrences are attributable to the existence of the trough in the curl of 
the wind stress. 

The occurrence of the Equatorial Undercurrent apparently arises as a con- 
sequence of the tilt in the sea level caused by the piling up of wind-driven 
water at the western part of the Equator - the mean sea level along the western 
side is 70  to 80 cm higher than in the east (Fig. 4) .  The horizontal pressure 
gradient caused by this tilt in the sea level causes a downstream baroclinic flow 

I 
along the Equator and is often given as the driving force of the Equatorial 
Undercurrent. While such an explanation is reasonable, it still does not fully 
explain the occurrence of the Undercurrent. After all, this current extends 2" 

the Coriolis effect becomes significant. In point of fact, the geostrophic balance 

I 
to 3" north and south of the Equator and, therefore, flows in a region where 1 
is valid as close as ?h " to the Equator (Knauss, 1960; Montgomery and Stroup, 
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1962). This is only 55 km away from the Equator! The explanation for the 
Undercurrent is further provided for by the effect of wind-driven circulation. 
Just north of the Equator, the Northeast Trades will drive the surface water 
to the west, by nature of the Ekman drift current theory. However, the net 
Ekman transport is to the north. Similarly, just south of the Equator the South- 
east Trade Winds, while transporting surface water to the west, will provide 
a net southward transport. Hence, a compensating geostrophic flow should 
result below the Ekman layer which feeds into the undercurrent. Actually, 
because of the presence of the higher sea level on the western side this slope 
will permit the meridional geostrophic flow to be directed toward the Equator 
anyway, and this water can feed into the undercurrent. 

More recently, Taft et al. (1973) have observed that the Equatorial Under- 
current and the winds in the vicinity of Christmas Island undergo fluctuations 
with a periodicity of 3 to 4 days. Since periodicity in the fluctuations in the 
winds and sea level of 4 to 5 days has been observed over the central Pacific 
(Groves, 1956; Groves and Miyata, 1967), there is some speculation as to 
whether the Equatorial Undercurrents are excited by these winds. In fact, 
Philander (1973), having reviewed the various theories and models of the 
Equatorial Undercurrents, has expressed reservations as to the apparent suc- 
cesses of the theories and models which do not allow interaction of the Under- 
current with planetary waves generated at the Equator or with such waves 
propagating equatorward from the higher latitudes. Thus, even though the 
simple models of the equatorial circulation appear to explain the occurrence 
of the Undercurrent, there are still a large number of unexplained questions 
related to its dynamics. 
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ABSTRACT 

Numerical models were used to com- 
pute water circulations throughout 
the 1970 shipping season for Lake 
Erie and for the 1972 International 
Field Year on Lake Ontario. Simul- 
taneous computations of surface ele- 
vations were compared with observed 
water levels to adjust the model re- 

sults after the fact. As a by-product 
of these simultations, effective stress 
coefficients over water can be esti- 
mated. The results support earlier 
evidence that the effective wind stress 
over water is larger than indicated by 
atmospheric boundary layer measure- 
ments. 

1 Introduction 
In recent years increased concern with the aquatic environment has lent 
considerable impetus to dynamical simulation of large water bodies. The shift 
of emphasis from the classical storm surge problem to modern water quality 
models has been accompanied by a change of time scales from days to years. 
An interesting by-product of such long-term simulations is the opportunity to 
evaluate certain physical parameters under different environmental conditions. 
An example is the aerodynamic drag coefficient over water as derived from 
comparisons of observed and computed water levels and currents. 

It is known that the choice of method for estimating stress coefficients may 
have a considerable effect on the outcome of the study. The matter has been 
reviewed in a number of publications and a comparative study has been made 
recently by Wieringa (1974). Since the latter includes an extensive bibliog- 
raphy of earlier studies, the list of references will be kept to a minimum in the 
present report. A study of this literature leads to the conclusion that drag 
coefficients derived from atmospheric boundary layer measurements tend to 
be lower than corresponding values inferred from changes of water levels. 

Two types of hydrodynamical models are commonly used to estimate effec- 
tive wind stress over water from wind set-up. The first one is based on steady- 
state solutions of the familiar Ekman equations, whereas the second employs 
numerical techniques to compute water transports and surface elevations as a 
function of time and space. The first method has been applied to Lake Erie 
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by Keulegan ( 195 3) and to Lake Ontario by Donelan et al. ( 1974b). Platzman 
(1963) used the numerical procedure in a study of selected storm episodes on 
Lake Erie. 

The results discussed in the present paper have been obtained from numerical 
models of Lake Erie and Lake Ontario, but the time scales involved are much 
longer than the typical storm-surge periods usually considered in this regard. 
Actually, the purpose of the computations was to simulate water circulatio'ns 
throughout the 1970 shipping season on Lake Erie and the 1972 International 
Field Year on Lake Ontario, in the framework of interdisciplinary study proj- 
ects on these lakes. In view of the availability of extensive series of water 
levels computed in the course of these simulations, it appears of some interest 
to compare the resulting drag estimates with previous determinations. 

2 Some notes on wind induced water set-up 
Inasmuch as the slope of a water surface reflects the action of the wind stress 
integrated over the whole water body and over a substantial time interval, it 
would seem to be an ideal indicator of effective drag coefficients over water. 
However, for a proper interpretation of the results of such computations, it 
is necessary to evaluate the dynarnical relationships between wind stress and 
surface slope. In particular in the present case, it is essential to place the 
results in the proper perspective, since the accuracy of the deduced drag esti- 
mate is not necessarily proportional to the complexity of the model. 

The basic characteristics of the response of a water body to wind forcing 
are readily illustrated by considering an elongated lake with uniform cross 
section, aligned with the wind. In the steady state the surface slope will balance 
the surface stress and bottom friction, thus leading to the conventional set-up 
relationship 

where x is the coordinate along the lake axis, h is the surface elevation, H 
is the depth, g the earth's acceleration, p the density of water, T,  the surface 
stress, and and T~ the bottom stress (from the water to the lake bottom). The 
resulting estimate of the drag coefficient is thus affected by any assumptions 
regarding bottom stress. 

A theoretical estimate of bottom stress follows immediately from the classical 
Ekman solutions, which express water transports in terms of surface stress 
(drift current) and surface slope (gradient current). Since mass conservation 
requires that the water transport, integrated over a cross section of the channel, 
must vanish, the Ekman theory gives a steady-state relation between set-up 
and wind stress averaged over the width of the lake. By recourse to ( I ) ,  the 
following expression for bottom stress in shallow water results: 
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where the bar denotes an average over the width of the channel. For constant 
depth, this equation gives T b  = - ~ , / 2 ;  for a sinusoidal cross section Tb  = 
-r8/8.  In either case the bottom stress produces an additional set-up according 
to ( 1 ), but the effect is less in the second case because the bottom currents run 
against the wind only in the deeper parts of the lake. This is illustrated in Fig. 1 
which displays the current distribution for a sinusoidal channel with positive 
values indicating currents running with the wind. 

Fig. 1 Shallow water Ekman solution for a long channel with sinusoidal cross-section 
aligned with the wind. Positive values indicate currents running with the wind. 

Different estimates of bottom stresses follow from other assumptions regard- 
ing vertical momentum diffusion, or if the flow is taken to be turbulent instead 
of laminar. For practical applications of (1)  it is usually assumed that the 
bottom friction produces an additional set-up of the order of 10 percent of 
the set-up caused by the surface stress (see, e.g., Bretschneider, 1967). Un- 
fortunately, this ambiguity is not eliminated if the conventional steady-state 
relationship is replaced by a time-dependent numerical model, allowing for 
any lake bathymetry and wind forcing. In particular, a vertically integrated 
model such as the familiar storm surge model requires that the bottom stress 
be related to the vertically averaged water transport. Theoretical formulations 
such as those proposed by Nomitsu (1934) and Platzman (1963) are closely 
related to the foregoing steady-state solutions. Thus the bottom friction appears 
in the model equations as an increase in the wind stress. On the other hand, 
a detailed analysis of a multilayered model of Lake Ontario (Bennett, 1974) 
indicates a reduction of set-up by bottom stress. The latter is also the case (1 if the foregoing analysis of bottom friction in a sinusoidal channel is extended 
to deeper lakes, using the complete Ekman solutions summarized by Welander ' (1957). 

In addition to the uncertainties associated with bottom stress simulations, 
any model is subject to errors caused by shore effects. Probably the most 
troublesome are the effects of radiation stresses summarized by Longuet- 
Higgins and Stewart (1964). Donelan et al. (1974b) investigated this problem 
for the Lake Ontario data base used in the present study and excluded all 
cases that might be subject to this type of error. The present analysis will be 
based on the complete data set and it will be shown that the results are fully 
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consistent with the earlier study. Nevertheless, it is understood that this and 
other problems associated with water level measurements will affect the present 
stress determination to the same degree as the conventional set-up method. 
The main purpose of this study is to compare results from a time-dependent 
numerical model versus the steady-state approach. In that context it is impera- 
tive to consider the spatial resolution of a numerical model since the sloping 
bottom near the shore makes a significant contribution to the total set-up. An 
estimate of this effect is readily obtained from steady-state relationships. 

Assume that the bottom is a linear function of x and let the x-axis be directed 
from the water to the land such that the beach intersects the mean water level 
at x = 0. The total water depth from the free surface to the bottom can then 
be written as H = - p x  + h where p is positive, and (1 ) becomes 

where the coefficient a represents the bottom stress as a fraction of the wind 
stress. If the depth at the first interior grid point of the numerical model is 
denoted by Ho and the surface elevation at the shore is indicated by h,, then 
solution of ( 3 )  by standard methods leads to 

For Lake Erie, the grid spacing of the present model is 6.67 km, whereas 
a = 0.5 according to Ekman theory for shallow water, hence y / P  = lo3 T , / H ~  
in c.g.s. units. If Ho = 500 cm, then h, is approximately 10 x T ,  for T ,  of order 
unity. For comparison, the total Buffalo - minus - Toledo set-up computed by 
the numerical model is of the order of 25 x T,  in c.g.s. units. Thus, the numerical 
model would tend to under-estimate the water set-up and hence would lead 
to an over-estimate of the drag coefficient. 

3 Computational procedures 
The results presented in the following were derived from numerical models 
of large water bodies very similar to contemporary models of the atmosphere. 
Thus, solutions of lake circulations and surface elevations are obtained by 
step-wise time integration of the dynamical equations of motion and the con- 
tinuity equation on a three-dimensional array of grid points. Input parameters 
are the bottom topography and shoreline configuration, observed temperature 
configurations derived from ship surveys, and the distribution of wind stress 
at the water surface as a function of space and time. Output parameters are 
the values of water levels and currents in any desired location and at any 
desired time. 

For Lake Erie a vertically-integrated model was run throughout the 1970 
shipping season and a two-layer model was applied during the summer months. 
For Lake Ontario all computations were made with a four-layer model. The 
numerical-dynamical aspects of the simulations have been presented else- 
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where (Simons, 1974, 1975). The resolution of the Lake Erie model is 6.67 
km, the grid spacing of the Lake Ontario model is 5 km. In the two-layer and 
four-layer mcdels the bottom friction is formulated in terms of the square of the 
currents in the bottom layer with a proportionality constant equal to 2.5 X lo-'. 
1n the homogeneous model, the bottom stress is related to the vertically-inte- 
grated transport by a coefficient which is inversely proportional to the square of 
the depth. A more theoretical formulation as discussed before, would augment 
the effective surface stress, which will be taken into account in the interpretation 
of results. 

For the Lake Erie study, synoptic stress fields over the lake were obtained 
from wind observations at six meteorological stations on the periphery of the 

1 lake. The stations selected for this study were Windsor, Long Point and Port 
Colbourne in Ontario, Toledo and Cleveland in Ohio; and Erie, Pennsylvania. 

( The procedure for estimating effective surface stresses over water followed 
Platman's (1963) treatment of the subject. Thus, variations of stress coeffi- 
cients due to station exposure and surface roughness were ignored. For the 
Lake Ontario study, observations from eleven meteorological buoys taken at 
a height of 4 m above the surface, were available throughout the period of 
simulation. All stresses were assumed to be related to the wind by the usual 
quadratic law, and the horizontal interpolations employed weighting functions 
inversely proportional to the square of the distance. A constant drag coefficient 
of 2.4 x was used for all simulations; hence the model solutions must be 
adjusted after the fact by comparing observed and computed water levels. 
Although the mcdels are to some extent nonlinear, the solutions vary with wind 
stress in nearly linear fashion. 

The analysis of Lake Ontario water levels is complicated by the large depth 
of the lake which results in typical changes of surface elevations of a few centi- 
metres or less. The inverse barometric effect leads to surface slopes of com- 
parable magnitude. In addition, the semi-diurnal lunar tide of the order of 
1 cm shows up quite markedly in the water level records. It is necessary, there- 
fore, to correct for these effects. Surface pressures were interpolated to the 
5-km grid mesh of the model on the basis of shore-based observations at eight 
first-order metwrological stations. The corresponding water levels at each 
grid point were then computed by imposing the condition that the total water ' mass of the lake be conserved. The semi-diurnal tide was removed by a high- 
precision digital band-reject filter. 

Lake Ontario water level records are dominated by high-frequency oscilla- 
I 

tions corresponding to free surface modes, the slowest of which has a period 
of 5 h. Although these are, in principle, reproduced by the numerical model, 
the errors inherent in the simulation of free oscillations might lead to spurious 
interpretation of the more direct effects of wind forcing. Therefore, the com- 
parison of observed and computed set-up was carried out not only for the 
original hourly data but also after removing these oscillations by a digital flter. 
A comparison was also made of water levels averaged over periods ranging 
from 5 h to one day. The resulting relationships between observed and com- 
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puted set-up were remarkably similar, but the correlation coefficients obviously 
increased with averaging period. 

In order to reduce an effective drag coefficient over water from the present 
numerical simulations, the distribution of points on a plot of observed versus 
computed water set-up is approximated by a linear relationship. Once this 
relationship has been determined, the original drag coefficient is multiplied by 
the slope of this line to give the best estimate of actual wind stress. It is com- 
mon to estimate the relation between two variables by linear regression, but 
this leads to two different lines depending on the choice of dependent and 
independent variable. When both variables are subject to error, a unique linear 
relationship is presented by the maximum likelihood estimate (see, e.g., Kendall 
and Stuart, 1970). If X and Y are two observable random variables with 
sample covariance S,,, sample variances Sx2 and S,2, and error variances SE2 and 
Ss2, respectively, then the slope coefficient of the maximum likelihood relation- 
ship is 

where h = S62/SE2 is the ratio of the error variances. It is clear that the above 
estimate is bounded from below by the regression coefficient of Yon X (SE2+ 0)  , 
and from above by the reciprocal of the regression coefficient of X on Y 
(Ss2 + 0).  

4 Estimates of aerodynamic drag coefficients 
The foregoing procedure to derive effective drag coefficients from numerical 
model simulations may be applied to any pair of water level stations at opposing 
ends of a lake. For elongated water bodies such as Lake Erie and Lake Ontario, 
the surface slope along the main axis of the lake may be expected to be most 
sensitive to wind forcing. Thus the stations selected for the present analysis are 
Toledo and Buffalo on Lake Erie and Burlington and Oswego on Lake Ontario. 
Furthermore, the data were divided into different classes in order to isolate 
effects of air-water stability and periods of high winds. Within each class, the 
correlation between observed and computed set-up was computed, and the 
drag coefficient was estimated from the slope of the linear relationship. 

Fig. 2 shows effective stress coefficients for Lake Erie during 1970 as a 
function of the time of the year. The results are shown at weekly intervals, but 
the statistical analyses are based on overlapping periods of four weeks of daily- 
mean water levels. The correlation coefficients attest to a nearly linear relation- 
ship between observed and computed set-up, and consequently the results are 
not very sensitive to the estimate of the ratio of error variances. The range of 
stress coefficients corresponding to linear regression of observed on computed 
set-up, and vice versa, is indicated by the length of the vertical bars. The solid 
lines refer to the vertically-integrated model; the dashed bars correspond to the 
two-layer model. 

In consideration of the foregoing discussion, the following adjustments to the 
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Fig. 2 Correlations between observed and computed set-up and deduced aerodynamic 
drag coefficients for Lake Erie at weekly intervals during 1970. Surface stress 
over water computed from shore-based wind observations. 

I model output were incorporated in Fig. 2. Since Lake Erie is shallow in terms 
of Ekman theory, a theoretical formulation of bottom stress as suggested by 
Platzman ( 1963) would lead to a considerable increase of computed water 
levels. Although empirical studies indicate that the effect is smaller than sug- 
gested by this theory, for the lake as a whole one would expect corrections of 
the order of 10 percent. Thus estimates of stress coefficients derived from the 
homogeneous model were reduced by that amount. Estimates of resolution 
errors relating to the effects of a sloping bottom near the shore, would lead to 
corrections of similar magnitude and again result in a lower drag estimate. 
Thus the wind stress coefficients deduced from the homogeneous model were 
reduced by 20 percent, those from the two-layer model by 10 percent. 
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Bulk Richardson Number 

Fig. 3 Correlations between observed and computed set-up and corresponding drag 
coefficients for Lake Ontario during 1972 as a function of bulk Richardson num- 
ber. Surface stress over water computed from buoy observations at 4 m above 
the water. 

Although the necessary information on the atmospheric boundary layer is 
not available, Fig. 2 would appear to indicate significant effects of stability on 
stress over water (see also Hsu, 1974). Thus there is a gradual increase in 
drag coefficients from the stable spring periods to the unstable fall season. By 
November, the coefficient tends to diminish again and the subsequent increase 
is probably related to the high wind activity. This may be inferred from the 
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graph of the standard deviations of observed set-up computed for each period. 
There is a considerable body of evidence to suggest an increase of drag coeffi- 
cients for strong winds (see, e.g., Wieringa, 1974). As a matter of interest, it 
may be added that Platman's simulations of Lake Erie storms yielded an 
estimate of 3.2 x 10-3 for the effective stress coefficient over water in relation 
to shore-based wind observations. 

A statistical analysis of Lake Ontario water levels as a function of time did 
not lead to meaningful results, mostly because a number of months during 
1972 were characterized by very calm weather. However, data from the mete- 
orological buoy network on Lake Ontario during the 1972 International Field 
Year make it possible to compute the stability of the atmospheric boundary 
layer and to classify our results accordingly. The stability parameter used is 
the bulk Richardson number discussed by Donelan et al. (1974a). As an 
example, Figure 3 shows results of statistical analyses for values of this index 

I between -0.02 and 0.01 at intervals of 0.002, based on 5-hourly averages of 
water levels. Because of the low correlations, the choice of dependent and 
independent variables has considerable effect on the slope of the straight line 
used to approximate the relation between observed and computed set-up. The 
range of stress coefficients corresponding to the two linear regression lines is 
again displayed by vertical bars. The dashed line connects the maximum like- 
lihood estimates for the case of equal normalized error variances in observed 
and computed set-up, that is, A = 1 in (5). 

As in the case of Lake Erie, the estimates shown in Figure 3 have been 
corrected for resolution errors. In this case, the correction was based on the 
form in which the depth appears if the steady-state relation (1) is integrated 
over the whole lake. The corresponding "effective" depth computed from the 
5-km bathymetry of the model was compared with available data on a 2-km 
grid. The corresponding reduction of stress coefficients was about 6 percent. 
No corrections are made for bottom stress, since all results were obtained from 

I 
a four-layer model, which presumably incorporates a better formulation of 
bottom friction than a one-layer model. 

I The results obtained here should be compared with stress calculations made 
by Donelan et al. (1974b) from the same data base. These authors used the 
conventional steady-state set-up formula, but applied very stringent selection cri- 
teria to the data in order to ensure that the underlying assumptions were mostly 
satisfied. These conditions were satisfied for a total of approximately 400 hours 
during the 1972 Field Year. The stability classification adopted by these authors 
identified about half of the cases as unstable and one quarter as stable. A linear 
regression of set-up on wind-squared resulted in a drag coefficient of 1.45 
X whereas a linear regression of wind-squared on set-up would give a 
value of 2.22 X the correlation being 0.81 for all data taken t0gether.l 

1In the final version of their paper, Donelan et a l .  (1974b) elected to adopt the lower 
bound on the drag coefficient for reasons given in their paper. Furthermore the wind- 
averaging procedure was modified, resulting in a slight reduction of the coefficient to 
1.35 X 10-3. 

Effective Wind Stress Over the Great Lakes 177 



In order to achieve an exact comparison, an analysis was done on the results 
from the present numerical model for the same hours selected by Donelan's 
program. The two corresponding coefficient estimates were 1.62 X and 
2.09 x with a correlation of 0.88, fully consistent with the steady-state 
results in the framework of the maximum likelihood theory. 

With regard to stability effects, Fig. 3 appears rather inconclusive since the 
correlations rapidly deteriorate towards both sides of the stability scale. As 
shown by the standard deviations, this is largely due to small values of wind 
set-up outside the range of weakly unstable configurations. Within the latter 
range, the increase of drag coefficient with instability is not very pronounced, 
but is should be noted that these coefficients refer to over water winds at a height 
of 4 m. Since the wind shows less variation with height under unstable condi- 
tions, the coefficient would decrease with stability when referred to a higher 
level. 

5 Summary and conclusion 
Estimates of effective aerodynamic drag coefficients over water, derived from 
long-term numerical model simulations of Lake Erie and Lake Ontario, are 
in general agreement with results from the conventional steady-state relation- 
ship between wind and surface slope. Comparison of the two methods for an 
identical data base give consistent results, while the improvement in correlation 
coefficients does not appear proportional to the increase in effort. Estimates of 
stress coefficients relating to wind observations at 4 m above the surface of 
Lake Ontario, appear to average out to 1.85 X assuming a comparable 
normalized error in wind and water levels. Drag coefficients over Lake Erie 
referring to routine observations at shore-based meteorological stations, are 
of similar magnitude in spring and early summer, but increase to an average 
value of 2.5 X during the stormy, unstable, fall season. 

The present calculations confirm earlier evidence that the effective stress 
over water is larger than indicated by atmospheric boundary layer measure- 
ments. Donelan's (1975) theoretical formulation of the interaction between 
surface waves and the atmospheric boundary layer shows a pronounced increase 
of drag coefficients if the wave field is not fully adjusted to the wind. Since 
boundary layer observations are biased towards periods of steady winds, it , 
might be expected that such measurements underestimate the effective stress 
over water. It is thus felt that the higher drag coefficients should be used if a 
first estimate of surface stress is required. 
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ABSTRACT 

A spectral representation consisting of spectral and grid-point representa- 
a two-dimensional Fourier series for tions. 
use on a sphere is described. The results show that the double 

The method is applied to the advec- Fourier series method compares fa- 
tion of a passive scalar field over the vourably with both the pseudo-spectral 
poles and is compared to the pseudo- and grid-point schemes. 

1 Introduction 
A method of representing scalar and vector component fields on the sphere by 
means of two-dimensional series has been developed and applied to the test 
problem of advection of a conical shape with a non-divergent flow field. 

The method grew out of the pseudo-spectral approach of Merilees (1973) and 
resembles the method of Orszag (1 974) although it was developed independently. 

The results of the advection calculation using double Fourier series is com- 
pared with both the pseudo-spectral method and the "conservative" grid point 
scheme obtained using the second order Arakawa Jacobian (Arakawa, 1966). 

2 Fourier Series Representation 
The representation of a scalar or vector field in terms of an expansion in simple 
functions has a number of advantages for computational purposes. Among these 
are the analytic nature of the representation and the ability to calculate deriva- 
tives and integrals accurately. It may also be possible, given suitable expansion 
functions, to do unaliased calculations, to maintain accuracy in a least squares 
sense, and to maintain certain conservative properties inherent in the continuous 
physical system. For Fourier series, the existence of a fast transform routine is an 
important consideration. 

It is common to represent a scalar field in terms of a truncated Fourier series 
expansion in longitude (the usual meteorological notation is used): 

The least squares approximation to the function is obtained for 
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The expression for A is often decomposed further by representing the A,(+) 
in terms of associated Legendre functions. The resulting spherical harmonic 
expansion is in terms of functions which are orthogonal with respect to area 
weighting over the sphere. The orthogonality of the expansion functions implies 
many desirable properties for theoretical and numerical treatment of atmo- 
spheric motions. 

While spherical harmonics have desirable properties from several points of 
view, they are somewhat difficult to use in numerical computations. Fourier 
series, on the other hand, are particularly simple both analytically and numer- 
ically and are amenable to fast transform techniques. Complications arise, how- 
ever, since a Fourier series representation is not orthogonal with respect to area 
weighting on the sphere. 

Consider A,(+) in eqn. (2.1), with the zero of "latitude" taken at the south 
pole so that + E [0, TI. A,(+) may be expanded in terms of a sine or cosine series 

1 
in this interval. Such a representation, while it will converge to A,(+) in the 
interval if sufficient terms are retained in the expansion, may exhibit Gibb's 
phenomenon and need not converge when differentiated term by term. 

It is possible, however, to expand A,(+) in a Fourier series which is properly 
convergent in [0, T] and which may be differentiated term by term. A simple 
demonstration of this is as follows. Given A(X, 4) defined in the "primary", 
region, X E [0, 2n-1, 4 E [O, TI, extend the definition of A to the region X E [O, 2 ~ 1  
+ E [0, 2n-] thus: 

At(X, 4) = {A(X' 7 4 E Lo, TI 
A(X + T, 2~ - +), + 6 [T, 2 ~ 1 .  

(2.3) 

Then A' is continuous (if A is) and periodic with period 2~ in both X and 4. 
Moreover, A '  = A in the primary region. This definition for A' is just that used 
by Merilees (loc cit) to obtain periodic functions in + for pseudo-spectral calcula- 
tions. For a given A, At(X, +) is the value of A which would be traced out fol- 
lowing a meridian of longitude completely around the globe. 

Since A' is continuous and periodic it may be represented as a double Fourier 
series 

This series is everywhere well behaved, possesses derivatives and integrals which 
may be obtained by operating term by term on the series and, in particular, 
represents the scalar in the primary region. 

i It can be easily shown that the symmetry of A' in the extended region together 
I with the specification that A' is real leads to the following relations among the 

coefficients : 
A'p-q = (- l)PA'pq, 

A'-Pq = (- l)PA'*pq, 
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The Fourier series (2.4) may be written to apply to the primary region in the 
form 

M 

where 
Fpq = eiq4 + (- 1)pe-iq4 

whence 

If A is to be single valued at the poles, 4 = 0, x it follows that 

1 C SA,,(I + (-l)p)eip' = const , 4 = o 
J p 1 4 N  q = O  

M 

C 1 SApq(l + (- l),)(- l)qeiph = const, 4 = x (2.11) 
l p l 4 N  q = 0  

and therefore that 
C SAP, = C A,, = 0; p # 0, p even 

qeven qodd 

is a necessary condition on the coefficients. Equations (2.7-2.1 1) define the 
representation of a scalar on the sphere in terms of a two-dimensional Fourier 
series. 

The Fourier series representation of a vector component is obtained in an 
analogous way. To obtain continuity in the extended region a change of sign is 
required, i.e., 

The resulting Fourier series is of the form 

and similarily for v .  The necessary conditions at the poles may be obtained by 
representing u and v in terms of the polar sterographic components Us and V, 
as follows: 

u = - Us sin h + V, cos h 

v =  - Us cos h - V, sin h 

where Us, V, behave as scalars in terms of spherical polar representation. At 
the poles 
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1 
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/ (2.7) 

\. 

s that 

, 4 = 0  

(2.7-2.1 1) define the 
.dimensional Fourier 

nt is obtained in an 
n a change of sign is 

so that we require 
i 1 6Upq = 1 Up, = 0 

qeven qodd I IP~  # 1, P odd. (2.14) 
1 svpq = 1 vpq = 0 

I 
qeven qodd 

For lpl = 1 
M M i W 1 26Ulq = 1 26Vlq = ( F o r g  = 0) 

q = O  2 q = o  
M W iW 1 26U1&-l)q = - 26V1q(-1)q = T (Forg  = n) (2.15) 

q = o  2 ' q = O  

and 
C 6Uiq = i 1 SVlq; 1 Ulq = i 1 vlq. 

qeven qeven qodd qodd 

The equations above give an expansion of a scalar or vector component field 
on the globe in terms of double Fourier series. The useful features of such an 
expansion have been alluded to at the beginning of the section. The drawback 
of this representation is that the expansion functions are not orthogonal with 
respect to area weighting on the sphere and, therefore, the expansion coefficients 
are not those appropriate to a least squares representation and do not exhibit 
the condition of finality. The coefficients are those appropriate to a least squares 
representation for a weighting function of unity (rather than the cosine of lati- 
tude as in area weighting). These disadvantages may be outweighed by the accu- 
racy and ease of calculation with Fourier series using the FFT. 

3 The simple advection case 
(2.13) I The simplest non-trivial test of the method is that of the passive advection of a 

i scalar field by a non-divergent flow field. The equation of motion is 
nay be obtained by 
nponents Us and V, 

I 

representation. At 

aA u aA v aA - +  - + - - = o  
at a sin 4 ax a ag 

or in terms of a stream function 4 
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The flow field chosen was that of solid rotation about an axis lying in the 
equatorial plane of the spherical coordinate system. Such a flow field requires 
the computation method to account successfully for the convergence of the 
meridians and the behaviour at the pole during the advection of the passive 
scalar over the poles. The stream function chosen was 

whence 
# = -a2w sin + cos h 

u = -aw cos + cos h 

v = aw sin A. 

The scalar field chosen was conical in shape with a base which formed a circle 
on the sphere. The defining expression is 

where A, is the height of the cone and R, is the radius of the circular base of the 
cone; +, and A, are the latitude and longitude of the central axis of the cone. 
Equation (3.1) was rewritten in the form 

where A = Alsin +. It may be shown that if A is represented in terms of a double 
Fourier series expansion (2.7) with the conditions (2.1 l), then A may be ex- 
panded in a series of the form 

where the A,, are expressed in terms of the A,, as shown in Appendix I. 
The transformed equation (3.6) can be written most compactly in the form 

Coefficients with negative values in the second subscript are defined as previously 
indicated, i.e. for a variable which behaves as a scalar 

A,-, = (- l)"Aa, 

and for a variable which behaves as a vector component 

The equation was integrated using central differences in time and the con- 
volution terms were calculated using the transform method of Orszag (1971a) 
(see also Orszag (1971 b). 

Linear stability analysis of the problem gives the stability restriction that, 
approximately, 

At G I tan +llwpm,x. 
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restriction that, 

In order to meet the stability requirement while retaining a reasonable time 
step, Fourier filtering in the h direction was performed poleward of 60' latitude 
( # J ~  = 30°, 1 5 0 " ) .  The maximum zonal wave number retained was, p,,,, where 

A value of w = 2.40885 x sec-' was chosen to give an advection veloc- 
ity which would move the apex of the cone one grid interval in an integral num- 
ber of time steps of 1  hour. The stability condition for this value of w and for 
N = 32 requires, approximately, At < 1 . 4  hours. 

The Fourier filtering also automatically maintains the conditions ( 2 . 1  1 ) .  These 
conditions are imposed in the filtering procedure simply by the condition that 
p,,, = 0 at the poles, i.e. that the filtered variable is a constant at the poles. 

The conservation of "total A" was tested by calculating 
M So2'S: A sin +d+dh = 27~ Z 4 S A O q / ( 1  - q,  ). 

a = O  
qeven 

It is not obvious that "total A" should be conserved in the truncated system ( 3 . 8 )  
although it will be seen that is is, to good approximation, at least in the cases 
tested. 

4 Comparison with other numerical methods 
The same calculations were carried out using two other methods; a finite dif- 
ference formulation of equation (3.2) using the Arakawa second order Jacobian 
(Arakawa, 1 9 6 6 )  and a pseudo-spectral formulation of equation ( 3 . 1 )  after 
Merilees ( 1 9 7 3 ) .  

The equation used in the finite difference case was 

+ S n - l m ( A n r n + ~  + A n - ~ m + l  - A n m - 1  - A m - 1 , - 1 )  

i + S n r n + l ( A n + l r n  + A n + i m + l  - An-1, - A n + ~ m - l )  

+ S n m - ~ ( A n - ~ r n  + A n - 1 , - 1  - An+lm - An+l,- l )  

+ S n + l r n + l ( A n + l m  - A n m + l )  + S n + l r n - 1 ( A n r n - l  - A n + l m )  

I 
+ ' / ' n - l r n + l ( A n m + ~  - An-1,) + S n - l m - ~ ( A n - ~ m  - A n m - l ) I = O  

The pseudo-spectral equations used can be written in the form 

where the net of grid points is defined as 
7T 

A,, = - n  
N , n = 0 , 1 ,  ..., 2 N - 1  
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TABLE 1. Characteristics of different advection calculations. 

Approx. 
CPU 

No. of Time 
Type of calculation Resolution At (hrs.) Revolutions (sec.) Apex Value 

Double Fourier 

(with Fourier chopping) 64 

Finite difference 64 

1995 
998 

173 
43 
170 

becomes 
unstable 

333 

2 55 6.14 
(no uolar filtering) 64 0.1 1 127 7.05 

and the derivatives are evaluated as described by Merilees (loc cit). An alternative 
pseudo-spectral formulation can be defined in terms of a series representation 
of the form (2.7) and (2.13) and will of course be identical to Merilees' scheme. 

5 Discussion of results 
Little effort was made to optimize the calculation using the Fourier series method 
other than the use of Orszag's (1971) convolution method for calculating the 
two non-linear products involved. The same FFT subroutine was used in both 
Fourier methods. Advective calculations with a number of resolutions and time 
steps were performed for the several methods. 

Table 1 summarizes the results of several such calculations. The results are for 
512 hours at which time the cone should have completed one revolution, and 
after 1024 hours at which time the cone should have completed two revolutions. 
The cone is initially situated at the equator for the Fourier series case and is dis- 
placed one-half a grid distance from the equator in the pseudo-spectral and 
finite difference cases. In the two Fourier methods the resolution listed in the 
table is 2N (equivalent to the number of grid points involved in a discrete trans- 
form). In all cases M = N. For the finite difference calculation, the resolution is 
the number of grid points around a latitude circle. The number of points in the 
north-south direction is one half this number. 

In all cases the "mass" of the cone, i.e. the mean value of A was conserved to 
lo-'' in the spectral calculations and to in the pseudo-spectral calculations. 

Fig. 1 gives a north-south profile through the cone after 512 hours (one revo- 
lution) with At = 1 hr for the cases: (a) double Fourier series method, 2N = 64; 
(b) double Fourier series method, 2N = 32; (c) double Fourier series method, 
2N = 16; (d) pseudo-spectral method, 2N = 64; and (e) second order Arakawa/ 
Jacobian, AX = A+ = 2~164. The cone has been advected over both poles and 
should have returned to its original position indicated by the light solid lines in 
the figure. It is apparent from the figures that: 
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(i) both the shape of the cone and its position are very well treated by the double 
Fourier series and pseudo-spectral methods while the second order finite 
difference calculation is clearly inferior. 

(ii) even the low resolution double Fourier series calculation (2N = 16), where 
computation times become comparable to times for finite difference meth- 
ods, gives very good results. 

(iii) in the double Fourier and pseudo-spectral cases, the point of the cone suffers 
some distortion. This is due primarily to time truncation error. The inset of 
Fig. (la) gives the shape of the cone apex with At reduced to 0.5 hr. In this 
case the tip of the cone is rather well represented. 

Fig. 1 North-South profile through the cone after one complete revolution about the 
sphere with At = 1 hr. (a) double Fourier method with N = 32, (b)  double 
Fourier method with N = 16, (c) double Fourier method with N = 8, (d) Pseudo- 
spectral method N = 32 (e) second order finite difference method with Ah = A+ = 
2 ~ / 6 4 .  Note that the initial position of the cone is displaced one half a grid length 
from the equator in the pseudo-spectral and grid point methods. 
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Fig. 2 North-South profile through the cone after two complete revolutions about the 
sphere with At = 1 hour: (a)  double Fourier method with N = 32, (b )  Pseudo- 
spectral method with N = 32 and Fourier chopping, (c)  second order finite 
difference method with AX = A# = 2r/64. 

Fig. 2 gives a north-south profile through the cone after 1024 hrs. (2 revolu- 
tions again with A t  = 1 hr. for the double Fourier series and pseudo-spectral 
cases (2N = 64) and the second order grid point method. The shape and position 
of the cone has deteriorated very little from the previous case for the double- 
Fourier and pseudo-spectral calculations. The grid point calculations displays 
increased distortion. 

In the case of a cone advected by such a simple flow field one might expect the 
pseudo-spectral scheme to give results comparable to the double Fourier scheme. 
After one revolution this is essentially the case as indicated in Fig. l(d). For 
longer times, however, aliasing effects begin to dominate the solution. Fig. 3 
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Fig. 3 North-South profile through the cone after one and one-half revolutions about 
the sphere with At = 1 hour. Pseudo-spectral method with N = 32 but no Fourier 
chopping. 

Fig. 4 East-West profile through the cone after one complete revolution (dots) and after 
two complete revolutions (crosses) about the sphere with At = 1 hr. Double 
Fourier method with N = 32. 

indicates the result after 768 hours (one and one-half revolutions). The solution 
continues to deteriorate rapidly thereafter. In this case at least, it is easy to con- 
trol the aliasing by Fourier chopping as proposed by Merilees (loc. cit.). The 
result of Fig. 2(b) has been obtained by chopping the high wave number one- 
third of the spectrum at 64 hour intervals. 

The east-west profile of the cone is symmetric for the double Fourier method 
and very accurately maintained as indicated in Fig. 4 where the points plotted on 
the 'left' half of the cone are for one revolution while those on the 'right' are for 
two revolutions. 

Finally, it should be pointed out that the apparent difference in efficiency 
between pseudo-spectral and double Fourier series methods as indicated in the 
table can be reduced considerably. The program used for calculating cross- prod- 
uct series in the double Fourier calculation was rather general in form. The cal- 
culations of u(aff/ah) and v(aA/a+) were done independently and the fact .that 
Up, and Vp,  were constant in this case was not used to speed up the calculations. 

I 
( 6 Summary 

I A method of representing scalar and vector components on the sphere in terms 
of two-dimensional Fourier series has been used in the simple test calculation of 
passive advection of a conical shape. The cone is advected several times around 
the sphere in a meridional direction so as to pass over both poles. The results are 
compared with similar calculations using pseudo-spectral and grid point meth- 

! ods. The double Fourier series method gives good results, even at low resolution, 
I and is not complicated by the aliasing problems inherent in the pseudo-spectral 

calculation or by the inaccuracies inherent in the grid-point scheme. 
It should be noted that in the absence of proof of the conservation of quad- 

ratic quantities in this numerical scheme, it is not possible to claim that non- 
I 
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linear instabilities must necessarily be absent in the calculation for this or for 
more nonlinear "meteorological" flow situations. The two-dimensional Fourier 
series calculation exhibited no non-linear instability behaviour, however while 
the pseudo-spectral calculation became unstable. This suggests at least, that the 
method is less prone to aliasing errors, as might be expected in view of the way 
in which the nonlinear terms are calculated. It is conceivable that some conserva- 
tion statements may be possible of proof which, while not guaranteeing exact 
conservation of quadratic quantities with area weighting on the sphere, will 
guarantee the boundedness of these quantities and hence the absence of non- 
linear instabilities. Such proofs however are not obvious. 

While little effort was made to optimize the double Fourier calculations with 
respect to computer time, the accuracy of the method at low resolution compared 
to grid point schemes at "greater" resolution suggests that for similar accuracy 
the double Fourier series method may well be as efficient. In the case where 
storage is more of a constraint than computation time, the double Fourier 
method could be very attractive compared to grid point methods. In more com- 
plicated cases, the shallow water equations for instance, there appears to be no 
reason why semi-implicit time differencing could not be employed to yield a 
significant increase in efficiency. 

For all schemes used here, polar filtering was used to control the time step and 
to maintain computational stability. The desirability of polar filtering in more 
complicated cases is by no means clear. It may prove to be necessary and/or 
desirable to maintain stability by some other method such as implicit time dif- 
ferencing. 

The double Fourier series method applied to the sphere has a number of de- 
sirable features compared to pseudo-spectral and grid point methods as men- 
tioned above. Compared to the more usual spherical harmonic representation 
the ease of calculation using the FFT must be weighed against the "pole prob- 
lem" and the fact that the expansion functions are not orthogonal with respect 
to area weighting on the sphere. A more definitive comparison of the various 
methods must await more meteorologically realistic calculations. 

Appendix 

Fourier series representation of A = Alsin 4. 
Given a scalar 

x GAP, = A,, = 0, p even, p # 0, (Al) i 
qeven qodd 

we wish to determine the Fourier series representation of A = A/sin 4. It is 
apparent that 2 must have a formal expansion like that of a vector compo- 
nent. 
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1  

for 

+ 2i(-l)p+' sin 4 

0;  B = q, /I - q even 
= 2i 

7 7 ; B  - qodd, > O  
-77; - q odd, < O  

+ 2 4 -  I).+ B + n even} 
77; + q odd 

we have 
9 -  1 M -  1 

-2 i  x A,,; p even, q even : 2i C P odd, q even 
* p = q + 1  

podd ,odd A,, = .  
9 -  1 M 

-2i  C GApp; p even, q odd: 2i C A g p ;  P odd, q odd 
D = q +  1 

The condition ( A l )  on A,, implies that 
* 

A,, = 0, q 2 M 

so that A is expressible in a double Fourier series with the same number of terms 
as A. 

This formal derivation gives relations for A,, which are also those obtained 
by equating terms in the series for A and A sin 4 and solving the resulting sets of 
equations subject to the conditions ( A l ) .  The case forp = 0 however is anomal- 
ous. The series derivation, or the consideration that A/sin 4 is singular for 4 + 
0, 77 shows that the values for A,, are indeterminant. This is not a problem in the 
transformed equation of motion in the case treated here since A enters as a deriv- 
ative with respect to A, i.e., as &A,,, so that the term is well defined for p =. 0. 
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The development of droplet size, 
supersaturation, and temperature in 
an ascending, unmixed parcel of 
cloudy air was investigated using a 
numerical model in which condensa- 
tion and supersaturation are explicitly 
calculated. Of particular interest was 
the steady-state value which the super- 
saturation attains, and the time re- 
quired to reach this value. The results 
were found to be in reasonable agree- 
ment with an approximate analytical 
solution of the equations that predicts 
a steady-state supersaturation equal to 
G(p, T)U/vr, where G(p, T) is a known 

thermodynamic function of tempera- 
ture and pressure, U is the updraft 
speed (assumed constant), v is the 
number of droplets per unit mass of 
air (assumed constant), and r is the 
droplet radius. The approach to this 
limiting value is very nearly exponen- 
tial, with a time constant equal to 
G(p, T)/Qlvr, where Ql is a function 
of temperature. Without giving up the 
possibility of approximate analytical 
solutions, the equations can be elab- 
orated to allow an accelerating up- 
draft or to simulate the effects of rapid 
droplet coalescence. 

1 Introduction 

As an exercise for an undergraduate course in cloud physics, a computer model 
was devised for tracing the development of droplet size and supersaturation in an 
ascending air parcel. The students ran repeated experiments with the model, 
varying the initial conditions, in order to determine how quickly a steady value 
of supersaturation is reached and on what this value depends. Not surprisingly, 
the results showed systematic dependences on such parameters as updraft speed, 
droplet size and concentration, and initial temperature. In every case a quasi- 
steady-state value of supersaturation was approached very quickly, suggesting 
that some of the factors in the differential equation for the rate of change of 
supersaturation could be regarded as constant during the short time required to 
reach the steady state. An analytical solution based on this approximation was 
found to be in agreement with results from the computer model. 

The model is a useful teaching aid, combining a number of fundamental ther- 
modynamic and cloud physical processes. Included are adiabatic expansion, 
diffusional growth, latent heating, and changes in supersaturation, all with the 
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correct dependence on temperature and pressure. Equally important, the results 
of the numerical experiments, and the analytical approximations they suggest, 
provide insight into the factors influencing the course of supersaturation in 
natural clouds. The model predictions are apparently consistent with results 
from more elaborate calculations, such as those of Squires (1952) and Young 
(1974). 

2 The Model 

A parcel of air containing a population of equal-sized cloud droplets ascends at 
a constant speed. Pressure decreases at the hydrostatic rate, supersaturation is 
created, and the droplets grow by condensation-diffusion. The released latent 
heat raises the temperature of the air, with the heat content of the droplets being 
neglected. The saturation ratio is accounted for explicitly, by comparing the rate 
at which supersaturation is produced by the updraft with the rate at which it is 
depleted by condensation. During the process, the droplet mixing ratio is con- 
stant: no new droplets are created by the activation of condensation nuclei; none 
is lost by coalescence. 

a Initial Conditions 
The following parameters are specified initially: 
(1) droplet radius, ro 
(2) droplet concentration, vo per unit mass or no per unit volume 
(3) updraft speed, U 
(4) temperature, To 
(5) pressure, po 
(6) saturation ratio, So 
From these parameters are calculated the initial values of air density po, liquid 

water mixing ratio x,, and liquid water concentration M,, using the relationships 

Po = ~ o l R ~ T o  

where Rr is the gas constant for air and p, is the density of water. 

b Changes in the Various Quantities 
(1) Drop size. 
It is assumed that the droplets are large enough for the solution and curvature 

terms in the diffusional growth equation to be neglected. The equation is then 

where 
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F, and Fd are thermodynamic factors given by (cf. Mason, 1971) 

where L is the latent heat of condensation, E = 0.622 is the ratio of the gas con- 
stants of air and water, K is the coefficient of thermal conductivity of air, D is the 
diffusion coefficient of water vapor in air, and es(T) is the equilibrium vapor 
pressure over a plane water surface at temperature T. Computational details in 
evaluating these factors are explained in the Appendix. Ventilation effects are 
small for the droplet sizes considered and are neglected. 

When a time step At is taken, the new radius is obtained by integrating (I): 

where a, is the value of a determined by the initial values of temperature, pres- 
sure, and saturation ratio. 

(2) Liquid water content. 
The droplet mixing ratio v0 is assumed constant. Therefore, after time step At 

the liquid water mixing ratio is given by 
3 

X I  = Xo + Ax1 = 4rr~Lvorl . 
(3) Pressure. 
The change in pressure in time At is given by 

where po is the initial density, U the updraft speed, and g the acceleration of 
gravity. 

(4) Temperature. 
From the first law of thermodynamics, the differential equation linking tem- 

perature, pressure, and condensed water is 

d T  R'dp L - - - -=  - dx. 
T cp P c,T 

Therefore the temperature after At is given by 

(5) Density. 

(6) Liquid water content. 

Ml = PlX1. 
(7) Saturation ratio. 
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eed, and g the acceleration of 

Yerential equation linking tem- 

The differential equation which describes the change in saturation ratio, as 
adapted from Fletcher (1962, p. 128), is 

where Q ,  and Q ,  are thermodynamic factors given by 

The change in S in time At is calculated from 

ASl = S1 - So = Q,UAt - pQ2Axl, (11) 
I whereax, = X, - x,, p = +(pl + Po), and Q, and Q, denote the thermody- 

namic factors evaluated at T = +(To + TI) andp = +(po + p,). It was found that 
the integrations were considerably more accurate when these averages were used 
in place of the initial values, especially in the case of density. 

A sequence of time steps is taken and the development of r, T, S, and the other 
calculated variables is thereby followed. It was found that time steps of one 
second or less are required for accuracy and computational stability. 

3 Results 
The main point of this study was to determine the course of supersaturation in 
an ascending cloudy parcel, and to investigate its dependence on such parameters 
as updraft speed, droplet size and concentration, and initial temperature. Each 
of these parameters was varied (in addition to several others) and a number of 
calculations were carried out over times ranging from a few seconds to several 
minutes. 
a Standard Case 

The standard experiment, against which the various results were compared, is 
defined by the following initial conditions, which are thought to be representative 
of the lower levels of rapidly developing cumulonimbus clouds of the Canadian 
Prairies: 

ro = 8 pm 
no = 200 cmb3 
U = 10m/s 

To = 7°C 
po = 800 mb 
so = 1.00. 

For these conditions the initial values of water content are xo = 0.43 g/kg and 
Mo = 0.43 g/m3, as the air density is 1 kg/m3. 

Fig. 1 shows the development of droplet radius and supersaturation during the 
first 20 s (200 m) of ascent. A peak supersaturation of 0.97 per cent is reached at 
7 s, after which the supersaturation gradually decreases. The droplet size in- 
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Time, sec 

Fig. 1 Development of droplet size and supersaturation in the standard case, defined by: 
r.  = 8 pm, no = 200 cm-', U = 10 m/sec, To = 7"C, Po = 800 mb, So = 1.0. 

Pressure, mb 
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Fig. 2 Temperature and liquid water mixing ratio in the standard case (solid curves). 
The dashed curves are for temperature and condensed water in pseudoadiabatic 
ascent. 
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ration in the standard case, defined by: 
r,  = 7"C, Po = 800 mb, So = 1.0. 

in the standard case (solid curves). 
I condensed water in pseudoadiabatic 

creases relatively slowly during the first second, owing to the low values of super- 
saturation. After the peak supersaturation is reached, the droplet growth curve 
becomes approximately parabolic, as would be expected from (1) if o were 

I constant. 
In Fig. 2 the parcel temperature and liquid water mixing ratio are plotted for 

the first five minutes (3 km) of ascent. Shown for comparison (dashed) are the 

1 temperature for pseudoadiabatic ascent and the liquid water content for a satu- 

1 rated adiabatic process. Because all the vapor excess over equilibrium does not 
condense out in the model, it gives temperatures and water contents that deviate 
progressively from the adiabatic values. For the case of S = 1.0 (no supersatura- 
tion) the curves would be coincident. 

b Efect of Varying the Initial Conditions 
(1) Supersaturation. 
Figs. 3 and 4 illustrate the influence of initial supersaturation on the develop- 

ment of droplet size and supersaturation. Fig. 3 shows that in about 10 s the 
supersaturation reaches essentially the same value in all cases, regardless of its 
initial value. A sustained, quasi-steady value is reached, followed by a gradual 
decrease. In these examples the curves are indistinguishable after 15 s. Because 
droplet growth rate is proportional to supersaturation, the cases with high initial 
saturation ratios produce larger drops, as shown in Fig. 4. These cases also pro- 

Time, sec 

Fig. 3 The progress of supersaturation from different initial values. All other parameters 
are as in the standard case. 
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Fig. 4 Development of drop radius as a function of initial supersaturation. These curves 
correspond to the cases in Fig. 3 .  The ordinate scale is linear in Y ;  the curves 
would therefore be straight lines for a in ( 1 )  a constant. 
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response; thi 
seconds. Thu 

duce slightly higher liquid water contents and temperatures, because of the faster 
initial condensation rates. 

(2) Updraft speed. 
The development of supersaturation is shown in Fig. 5 for vertical velocities 

ranging from 1 to 15 m/s. The faster the updraft, the higher the peak supersatura- 
tion and the faster the initial increase in supersaturation. 

(3) Other variables. 
By individually varying the other parameters that define the initial conditions 

it was found that the quasi-steady, limiting supersaturation increases with 
(a) decreasing no 
(b) decreasing r, The equatior 
(c) decreasing To 
(d) increasing p, 

In every case, it was found that the approach to the limiting supersaturation ! 
could be approximated as exponential, especially at the earliest times. Fig. 6 ' In terms o f t  
illustrates this effect for the cases in which no was varied. Plotted as a function j 

of time for each case is ln[(s, - s)/(s, - so)], where s = (S - 1) is the super- 
saturation at time t, s, is the initial supersaturation (in all these cases, zero), and 
s, is the quasi-steady, limiting supersaturation. Straight lines imply exponential 1 where A = ( 
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Time, sec 
Fig. 5 The effect of updraft speed on the course of supersaturation. 

response; this is seen to be a good approximation in all cases for the first few 
seconds. Thus, for short times, the supersaturation varies according to 

where T is the "time constant" characterizing the approach of supersaturation 
to its limiting value. Table 1 summarizes the results, giving the values of s, and T 
for each calculation. 

4 Approximate analytical solution 
Using (1) and (2), the rate of change of liquid water content may be expressed 

The equation (10) for saturation ratio then becomes 

-dS - = Qiu - P Q ~ ( ~ P L v ~ ) ( F ~  + Fd)-'(S - l)r. dt 

In terms of the supersaturation s = (S  - 1) we may therefore write 
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Time, sec 
Fig. 6 The initial behavior of supersaturation, for various values of droplet concentra- 

tion. On these coordinates the straight lines (dashed) would imply exact ex- 
ponential response. 

The calculations showed that the approach to the limiting value of supersatu- 
ration is quite rapid. As an approximation, pressure and temperature may there- 
fore be regarded as constant during the short time required for the limiting super- 
saturation to be reached. If the small change in droplet radius is also neglected, 
it follows that A and B in (14) are constant. The appropriate solution of this 
equation is then 

where so = (So - 1) is the initial supersaturation. The limiting supersaturation 
is therefore given by 

A U 
S,  = (S, - 1) = - = G(p, T)- , 

B T"0 
(16) 

where 

Thus the limiting supersaturation is directly proportional to updraft speed and 
inversely proportional to the product of drop concentration times drop radius. 
As a matter of interest the function G(p,  T) is plotted in Fig. 7. 
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TABLE 1. Values of the limiting supersaturation (S, - 1) and time constant T 

determined for the indicated initial conditions. 
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800 7 10 0 200 4 1.52 2.72 
800 7 10 0 200 8 0.97 1.73 
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800 7 10 0 50 8 3.05 5.45 

Temperature, O K 
Fig. 7 The proportionality factor G ( p ,  T),  in s/g, relating the limiting value of fractional 

supersaturation, s,, with updraft, droplet size, and droplet concentration. 
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800 7 10 0 100 8 1.78 3.17 
800 7 10 0 200 8 0.97 1.73 
800 7 10 0 500 8 0.41 0.73 
800 7 10 - 2 200 8 0.99 1.85 
800 7 10 - 1 200 8 0.98 1.81 
800 7 10 0 200 8 0.97 1.73 
800 7 10 1 200 8 1.02 0.75 
800 7 10 2 200 8 0.96 1.91 
800 7 1 0 200 8 0.10 1.70 
800 7 5 0 200 8 0.50 1.78 
800 7 10 0 200 8 0.97 1.73 
800 7 15 0 200 8 1.43 1.72 
800 -3 10 0 200 8 1.11 1.84 
800 7 10 0 200 8 0.97 1.73 
800 17 10 0 200 8 0.86 1.68 
600 7 10 0 200 8 0.75 1.34 



From (1 5), the time-constant characterizing the change in supersaturation is 
given by 

Using (16) and (18), s, and T were calculated for all cases listed in Table 1. In 
both equations the initial value of radius was used for r. The agreement between 
these approximate analytical results and the calculated values in Table 1 was 
found to be good. In the standard case, for example, (16) and (18) predict s, = 

1.04% and T = 1.88 s whereas the calculations gave s, = 0.97% and T = 1.73 s. 
The analytical values of s, and T consistently overestimate the computed values 
by an amount that averages about 10%. This discrepancy is explained almost 
entirely by the fact that the initial radius is used in the analytical evaluations, 
while in fact the radius has usually increased by about 10% by the time s, is 
reached. The discrepancies are least for the cases in which r increases by only a , 
small amount. The largest discrepancy occurs for the case in which the initial 
supersaturation was 1%. In this case the initial value is close to the limiting value 
and the changes in s are controlled primarily by changes in r. Consequently (18) 
is not a good approximation and overestimate? T by about a factor 2.5. 

The gradual decrease in supersaturation after the initial quasi-steady value is 
reached is explained by (16). As the radius continues to increase, s diminishes 
approximately as r 'I. 

5 Discussion 
In this elementary parcel model, the supersaturation rapidly tends to the equi- 
librium value that is determined by a balance between the rates of vapor pro- 
duction by the updraft and consumption by drop growth. The equilibrium value 
is given by (16), which is equivalent to the solution of (14) when dsldt = 0, and 
the response time by (18), both to good approximation. 

When the initial supersaturation is less than the limiting value, there is a signi- 
ficant difference between this simple model and an actual cloudy parcel. In the 
atmosphere condensation nuclei would be activated as the supersaturation in- 
creases and more droplets thereby produced. By consuming some moisture the 
additional droplets would be expected to reduce both the limiting supersatura- 
tion and response time. The values predicted by the model might thus be inter- 
preted as upper limits of the steady supersaturation and response time in real 
clouds. In an exhaustive treatment of droplet growth by condensation, Squires 
(1952) took into account the activation of additional nuclei as well as ventilation 
effects. He found also an approximate exponential approach to the limiting 
supersaturation with time constants ranging from 1 to 10 s. He gave an approxi- 
mate expression for the limiting supersaturation, corresponding approximately 
to the assumptions for the present model, that is entirely equivalent to (16), but 
with a proportionality factor which is appropriate for supersaturation expressed 
in degrees. 

As ascent continues in actual clouds, the drops can become large enough for 
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coalescence to begin, in which case the product vr will decrease with time. As 
shown by Young (1974), coalescence can proceed rapidly enough to produce a 
substantial increase in the supersaturation. To allow for the possibility of 
changes in drop concentration, as caused for example by coalescence, the elemen- 
tary model could be generalized somewhat by allowing B in (14) to vary with 
time. Thus, 

expresses the behavior of s in the more general system. To give an indication of 
the effect on s of a rapidly decreasing B, an elementary solution is possible for 
B(t) of the form 

Clearly B(0) = Bo, and B falls to half its initial value at t = to. The solution is 

~ ( t )  = Boto A + 1 (t + to). 

Therefore s does not approach a steady value, but increases at the constant rate 

For the initial conditions of the standard case, and for a half-time to = 30 s, the 
result is 

Even for a seemingly rapid decrease in B, the rate of increase of supersaturation 
is thus only about 2% per minute. By comparison, Young (1974) found a rate of 
about 0.6% minin-' due to coalescence in an example for a maritime cloud. 

The possibility of an accelerating updraft can be taken into account by al- 
lowing A in (14) to vary with time. For constant acceleration, for example, (14) 
becomes 

where k = dU/dt, with the solution 

The rate of change of supersaturation in this accelerating updraft is therefore 
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If the initial supersaturation is zero (as in the standard case), this result reduces to 

Because of the short time-constant, the rate of change of supersaturation will 
quickly tend to 

That is, in an accelerating updraft there will be a strong tendency for s to keep 
pace with changes in the limiting value of s, as defined by (16). 
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Appendix I 
Numerical Details 
In the F, and F, terms that appear in (2), the coefficient of conductivity K and 
diffusion coefficient D are empirically related to temperature and pressure by 

where T is in OK and p is in dynes/cm2. These expressions follow from the rela- 
tions between K and D and the viscosity of the air, and the empirical dependence 
of viscosity on p and T, as explained in the Smithsonian Meteorological Tables 
(R.J. List, 1958). The latent heat of condensation L is taken as constant at 2.5 x 
lo3 J/g, its weak dependence on temperature being neglected. The equilibrium 
vapor pressure over bulk water e, is obtained by integrating the Clausius-Clapey- 
ron equation, holding L constant, and is therefore 

e,(T) = 2.75 x 10" exp (- 5*44; lo3) , 
where the constant of integration is chosen to make the vapor pressure equal 6.1 
mb at P C .  

The same approximations for L and e, are used in evaluating the Q1 and Q2 
factors that appear in (10). 

References 
FLETCHER, N.H., 1962: The Physics of Rain- by condensation. Australian Journal of 

clouds. Cambridge University Press, 386 pp. Scientific Research 5 ,  59-86. 
LIST, R.J. (ed.), 1958: Srnithsonian Meteoro- YOUNG, K.c., 1974: The evolution of drop 

logical Tables. Smithsonian Institution, spectra due to condensation, coalescence 
Washington, 527 pp. and breakup. Preprints, Conference on 

MASON, B.J., 1971 : The Physics of Clouds. Cloud Physics, Tucson, Ariz., pp. 95-98. 
Clarendon Press, Oxford, 671 pp. American Meteorological Society, Boston. 

SQUIRES, P., 1952: The growth of cloud drops 

204 R.R. Rogers 

GLOBAL CLIMAT 

$14.50. 
Boucher of the 
global climate 
students to sync 

The book is a 
of the many rea 
tology and Syn, 
completed Worl 
textbooks for cl 
the average undl 
Its first chapter 
Whilst only deal 
understanding c 
book", its treatn 

I (including the p 
by several exist 
deal with tropic 
Asia, the Pacific 
(4); the mid-lat 
with well-docun 
followed by det 
heavily on pub1 

My main crit 
in any book dea 
present organizi 
general circulati 
its purpose. 

The book is 
drawings and m 
The glossary apl 

Several rnino~ 
17% cm high). 
to the many shc 
book's many fig 
use cal/cm2/mi 
used conversion 

I n  conclusion 
its way into ma1 

THE DYNAMIC M 

American Metec 
1975, 216 pp., $ 

Its relatively SIT 

has received inc 
work on the stra 
of ozone which I 



BOOK REVIEWS 

GLOBAL CLIMATE. Keith Boucher. The English Universities Press Ltd" 1975, 326 pp., 
$14.50. 
Boucher of the Loughborough College of Education, England, has written a textbook on 
global climate in which he succeeds in his stated objective of introducing geography 
students to synoptic climatology. 

The book is a reappraisal of global climate and has been written against the background 
of the many recent advances in climatology. Texts such as Stringer's Foundations 0/ Clima­
tology and Synoptic Climatology by Barry and Perry or even volumes of the recently 
completed World Survey of Climatology are unlikely to ever make it on lists of required 
textbooks for climatology courses, simply because they are beyond the financial reach of 
the average under-graduate. Boucher's book has obviously been written to fill this vacuum. 
Its first chapter, a brief general section on atmospheric processes, is by far its weakest. 
Whilst only dealing with "aspects of some climatic or global significance, necessary for an 
understanding of the atmospheric processes mentioned in the regional sections of the 
book", its treatment of topics such as atmospheric stability and meridional energy transfer 
(including the part played by ocean currents) is far from satisfactory and easily surpassed 
by several existing texts. Chapters 2-6 comprise the regional section of the book. They 
deal with tropical America and Africa (2); the tropical monsoon climates of India, S.E. 
Asia, the Pacific and northern Australia (3); the subtropical climates of China and Japan 
(4); the mid-latitudes (5); and the polar regions (6). Each regional chapter commences 
with well-documented sections on general climatic features of the regions. This is then 
followed by detailed regional climatic analyses, with a wealth of c1imatic data, drawing 
heavily on published data sources. 

My main criticism concerns the lack of an adequate overview, which is so necessary 
in any book dealing extensively with regional climatic analyses. What reasoning led to the 
present organization of this book? What links the regional sections? The section on 
general circulation (pp. 43-53) is too brief and rather sketchy and does not really serve 
its purpose. 

The book is well illustrated with some 30 satellite photographs and more than 150 
drawings and maps. It has an excellent bibliography which is detailed and well organized. 
The glossary appears to be adequate. 

Several minor points should be mentioned. I do not like the book's format (24 cm wide; 
17~ cm high). It requires four knees or a wide desk. The lay-out is useful for reference 
to the many short tables with climatic data but less than adequate when referring to the 
book's many figures. I applaud the use of metric units throughout the book but why still 
use cal/cm2/min or langley/min rather than watt 1m2? Appendix (4) with frequently 
used conversion factors does not even include energy units. 

In conclusion, J warmly recommend this book and feel confident that it will soon find 
its way into many colleges and universities. 

J.D. Kalma 
Department of Geography 
University of British Columbia 

THE DYNAMIC METEOROLOGY OF THE STRATOSPHERE AND MESOSPHERE. James R, Holton. 
American Meteorological Society Meteorological Monographs. Volume 15, Number 37, 
1975,216 pp., $30.00 ($20.00 AMS members). 

Its relatively small mass notwithstanding, the neutral atmosphere above the tropopause 
has received increased attention from meteorologists in recent years. Much productive 
work on the stratosphere has been motivated by the presence there of the protective layer 
of ozone which many scientists believe can be adversely affected by such diverse influences 
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as supersonic aircraft and the burgeoning production of artificial fertilizers. Dynamic 
meteorology plays a central role in determining the quantitative effects of man's activities 
on the ozone distribution. Thus, the practical motivation for studying the dynamics of the 
stratosphere and mesophere is compelling. Moreover, the motions observed there provide 
an absorbing and varied study in themselves. These motions, rather than photochemistry, 
are the subject of Holton's book. 

There is a brief account of observational evidence in the first chapter, but the bulk of 
the text is devoted to a discussion of mathematical models for the observed phenomena. 
The presentation of the models is lucid and in many cases the discussion of results is 
accompanied by figures. After introductory chapters on observations and the development 
of the equations, additional chapters treat baroclinic instability in the stratosphere and 
mesosphere, forced waves and wave·zonal flow interactions, and modelling of the general 
circulation of the stratosphere and mesosphere. One of the most interesting (and longest) 
chapters is that dealing with forced waves and wave-zonal flow interactions. Forced and 
free equatorial and extra tropical planetary waves as well as the tidal motions of the 
stratosphere and mesosphere are discussed. These are then related to the most dramatic of 
the observed changes in the zonal mean state: the sudden stratospheric warmings and the 
quasi-biennial oscillation. 

Most of the important theoretical results concerning the stratosphere are put forward , 
but this work is by no means an exhaustive review. In this sense it is an appropriate book 
for students or non-specialists in the field . One omission which appears significant is the 
effect of photochemistry on dynamics. This is an important dynamical effect which sets 
the stratosphere and mesosphere apart from the troposphere. Nonetheless, one of the 
virtues of this work may be that it does not attempt to present too much and thus dilute 
the significance of the most important advances made in the last 15 years. The author's 
perception of the substantial contributions and their interrelations is admirable. 

Still, in a book which presents a record of the important results obtained over a number 
of years, one would expect the author to attempt a greater synthesis than is achieved here . 
There is no concluding chapter, just as there is no concluding section at the close of each 
chapter. For the most part, the reader is left to form his own opinion of the present level 
of our understanding of the observed stratosphere and mesosphere and his own outlook 
for future research. While these sorts of projections tend to become dated rather quickly 
and are not appreciated by some readers, to this reviewer the venturesome act of including 
a critical synopsis seems not only sporting but also worthwhile. 

With this minor complaint aside. the book should be judged on its many merits. 11 
presents a well-written up·to·date account of our present understanding of the chemically 
neutral dynamics of the stratosphere and mesosphere. All of the material included is of 
great interest and most of it is essential to a proper comprehension of the motions in these 
regions. A book of this type was not previously available and it will be of value to anyone 
concerned with the dynamic meteorology of the stratosphere and mesosphere. 
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Dennis L. Hartmann 
Department of Meteorology 
McGill University 
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serve as the National Meteorological Congress. 

Correspondence regarding Society affairs should be directed to the Corresponding Secretary, 
Canadian Meteorological Society, c/o Dept. of Meteorology, McGill University, P.O. 
Box 6070, Montreal, P.Q. H3C 3G 1 

There are three types of membership - Member, Student Member and Sustaining Member. 
For 1975 the dues are $20.00, $5.00 and $60.00 (min.), respectively. The annual Institutional 
subscription rate for Atmosphere is $15.00. 

Correspondence relating to eMS membership or to institutional subscriptions should be 
directed to the University of Toronto Press, Journals Department, 5201 Dufferin St., Downs­
view, Ontario, Canada, M3H 5T8. Cheques should be made payable to the University of 
Toronto Press. 

La Societe meteorologique du Canada a ete fondee Ie 1 er janvier 1967, en replacement de la 
Division canadienne de la Societe royale de meteorologie, etablie en 1940. Cette societe existe 
pour Ie progres de la meteorologie et toute personne ou organisation qui s'interesse a la 
meteorologie peut en. faire partie. Aux neuf centres locaux de la Societe, on peut y faire des 
conferences sur divers sujets d'interet meteorologique. AJmosphere, la revue scientifique de la 
SMC, est distribuee gratuitement a tous les membres. A chaque printemps, la Societe organise 
un congres qui sert de Congres national de meteorologie. 

Toute correspondance concernant les activites de la Societe devrait etre adressee au Secre­
taire-correspondant, Societe meteorologique du Canada, Departement de Meteorologie, 
I'Universite McGill, c.P. 6070, Mont,,!al, P.Q. H3C 3G I 

II y a trois types de membres: Membre, Membre-etudiant, et Membre de soutien. La cotisation 
est, pour 1975, de $20.00, $5.00 et $60.00 (min.) respectivement. Les Institutions peuvent 
souscrire a (lJmosphere au coOt de $15.00 par annee. 

La correspondance concernant les souscriptions au SMC ou les souscriptions des institutions 
doit etre envoyee aux Presses de l'Universite de Toronto, Departement des periodiques, 
5201 Dufferin St., Downsview, Ontario, Canada, M3H 5T8. Les cheques doivent etre payables 
aux Presses de l'Universite de Toronto. 
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